
S.Leschev Responsive Email Design

! Awards

Ranking #Dev: Global TOP 300 (Certificate)

https://leetcode.com/sergeyleschev/
https://leetcode.com/sergeyleschev/
https://leetcode.com/sergeyleschev/

Golden Award for the Year of the Tiger Challenge

Algorithmic skills: Dynamic programming, Greedy algorithms, Catepillar method,
Binary search algorithm, Fibonacci numbers, Euclidean algorithm, Sieve of
Eratosthenes, Prime and composite numbers, Maximum slice problem, Stack and
Queues, Sorting, Time Complexity, Arrays, Prefix Sums, Leader, etc.

Contest: Algorithms, SQL, Data Structures, Bitwise operations (bit-ops), Frontend.

Google Engineering Level: L6+

Design large-scale systems / 2022

Table of Contents

" Which mobile devices can you design for

Design techniques for mobile optimization

$ Coding mobile emails

% Building responsive layouts

& Targeting devices with media queries

' Optimizing images for mobile

(Optimizing your subscribe forms

) Case study: Twitter

" Which mobile devices can you design for

A quick caveat: The techniques listed here aren’t universally supported by all
mobile email clients. As you may know, not all email clients were made equal—even
on the same device, how an HTML email displays can vary radically from inbox to
inbox.

Thankfully, the iPhone and other Apple iOS devices can not only boast of near
trouble-free email rendering, but also account for a large percentage of mobile
email opens, too. However, with the latest release of iOS 13, Apple’s dark mode will
pose new design and coding challenges to overcome so always remember to test
your emails.

With this in mind, we present to you a non-exhaustive list of mobile email clients
and their support for media queries. For context, media query support enables you
to use many of the responsive techniques that we’ll be covering in this guide.

file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/#-which-mobile-devices-can-you-design-for
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/#-design-techniques-for-mobile-optimization
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/#-coding-mobile-emails
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/#-building-responsive-layouts
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/#-targeting-devices-with-media-queries
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/#-optimizing-images-for-mobile
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/#-optimizing-your-subscribe-forms
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/#-case-study-twitter

Default device email clients

Client Media query support

Amazon Kindle Fire Yes

Amazon Kindle Fire HD Yes

Android 2.1 Eclair No

Android 4.x native client Yes

Apple iOS Yes

Gmail App for Android Yes

Gmail App for iOS Yes

Yahoo Android and iOS Yes

Outlook Android and iOS Yes

Gmail Android IMAP No

Microsoft Windows Phone 7.5 Yes

Microsoft Windows Phone 8 No

Microsoft Surface No

Windows Mail Yes

Samsung Email 6x No

3rd-party email clients

Client
Media query

support

Microsoft Outlook Exchange third-party app (Android) No

Gmail mobile app (all platforms). There are limitations: see
supported CSS properties

Yes

Yahoo! Mail mobile app (all platforms) No

Design techniques for mobile optimization

We’ll be designing two CSS layouts of the same newsletter: one layout that looks
great in webmail and desktop clients, and another layout that can be easily read on
the smaller mobile device screens.

For example, here’s an HTML email in Outlook:

https://developers.google.com/gmail/design/reference/supported_css
https://github.com/sergeyleschev

Below is the same email, only this time viewed in Apple’s iPhone Mail. As you can
see, there are significant differences between the two layouts. The mobile version
is skinnier, lacks visual clutter, and is just as readable as the desktop version. This
can be attributed to the use of mobile-specific CSS:

As a point of comparison, the right image is the same email, without this
stylesheet. See how tiny and unreadable the text is? This is the problem that faces
millions of email newsletters received on mobile devices every day.

https://github.com/sergeyleschev

Mobile-friendly layouts and design elements

Designing for mobile isn’t simply a matter of taking a crack at writing mobile-
specific CSS. Here are some other considerations:

Single-column layouts that are no wider than 600 to 640 pixels work best on
mobile devices. They’re easier to read, and if they fall apart, they’ll do so more
gracefully.

Links and buttons should have a minimum target area of 44 × 44 pixels, as per
Apple guidelines. Nothing is more unusable than clouds of tiny links on
touchscreen devices.

The minimum font size displayed on iPhones is 13 pixels. Keep this in mind
when styling text, because anything smaller will be upscaled and could break
your layout. Alternately, you can override this behavior in your style sheet—do
so with care.

Remember to keep your message concise, and place all important design
elements in the upper portion of the email if possible. However, since screen
sizes have become larger and there’s more real estate than ever before, it’s
recommended that you explore and test various formats (e.g. long-form
content vs. short-form content). Always keep your brand in mind. What might
work for one brand may not work for yours.

When appropriate, you can use mobilehide{ display: none !important;} to hide
content in your mobile layout. Use caution when hiding content in mobile. Ask
yourself, if your content is not worth showing in mobile, should it be included
in your desktop version? If you find your design uses this class on several
elements, you may want to reconsider your design and content.

When mocking up an HTML email or template, our advice is to create three
sketches or wireframes: one of the desktop and webmail layout, one for the tablet

layout, and one for a mobile layout. Building these three layouts will allow you to
see how your content will break on various devices, and it will help determine what
media queries you’ll need.

$ Coding mobile emails

When web designers or developers talk about stylesheets or CSS (Cascading
Style Sheets, they’re usually referring to an external stylesheet. And while that
works for websites it’s not the best for email.

Several major email clients block external stylesheets we included our CSS in two
ways:

Embedded styles located in the "head" of an email contained in a style tag

Inline styles included in the body of your email

When coding a mobile-responsive email, you’ll need both, as some clients will
remove the embedded CSS in the "head" of your HTML document, so the inline
style ensures your emails look perfect no matter what device your subscriber is
using.

Here’s what a basic stylesheet using both embedded and inline styles looks like:

Embedded styles

<head>
<style type="text/css">
 /* regular CSS styles go here */

 @media only screen and (max-device-width: 640px) {
 /* tablet-larger phone CSS styles go here */
 }

Embedded styles are what help you create mobile-responsive layouts. In the
example above, an @media declaration is made following mobile-specific CSS
styles.

Let’s examine what this declaration does: @media only screen specifies that the
email has to be displayed on a screen, and the second part, max-device-width
states the device’s viewport requirements.

The examples above states that the viewport can have a maximum width of 640px
and 479px, and then the styles following are implemented into your email,
adjusting everything from image and text sizes to the overall layout of your email.
Including two breakpoints can help you tweak various elements in your email to
accommodate larger mobile displays, such as those on tablet devices.

Inline styles are the safety net of CSS, as many email clients will strip away "style"
tags from the "head" of your html email. With inline styles, you can use various
properties such as setting the width, font size and weight, or font family. In the

 @media only screen and (max-device-width: 479px) {
 /* smaller-mobile-specific CSS styles go here */
 }
</style>
</head>

Inline styles
<table width="640" border="0" cellpadding="0" cellspacing="0">
<tr>
<td>
<table width="320" border="0" cellspacing="0" cellpadding="20" align="left" >
<tr>
<td width="320" style="font-family: Helvetica, Arial, 'sans-serif'; font-size: 33px; color:#1B1B1B; padding-left: 30px; padding-right: 30px; font-weight: 500; line-height: 40px; letter-spacing:.5px; width: 600px;">Content Example</td>
</tr>
</table>

above example, we identified the table widths and created a style= in the "td" that
declares the font, padding, and color properties.

For a more exhaustive list of what will work in your mobile-friendly email
templates, I recommend visiting caniemail.com or you can use our CSS inliner tool
that will take the hard work out of inlining all your styles.

Now, it’s time to revisit our earlier example of an email layout that’s been ‘narrowed
down’ and stacked for a mobile display. Here’s the design in iPhone Xs:

https://caniemail.com/
https://github.com/sergeyleschev

In this example, we’ve applied the tablescale class to HTML tables containing the
text and images. Below is a snippet of code that contains two @media queries,
creating two breakpoints for mobile devices:

<style type="text/css">
 /* regular CSS styles go here */
 @media only screen and (max-width: 640px) {
 /* mobile-specific CSS styles go here */
 .tablescale {
 width: 440px !important;
 margin: 0 !important;
 }
 }

 @media only screen and (max-width: 479px) {
 /* mobile-specific CSS styles go here */
 .tablescale {
 width: 100% !important;
 margin: 0 !important;
 }
 }
</style>

The tablescale class does something really interesting here. When the email is
viewed on a device with a screen width of 640px or wider, it has no effect.
However, when the screen width is 640px or less, it narrows down the table widths
to 440px. This same action is taken at the second breakpoint at 479px, giving the
table a width of 100%.

We’ve also added !important; to the mobile-specific styles to ensure they take
precedence. But otherwise, it’s run-of-the-mill CSS.

You could also feature other declarations, like:

<style type="text/css">

@media only screen and (max-device-width: 640px) {
 /* mobile-specific CSS styles go here */
 .tablescale { width: 440px !important; margin: }
 .imgscale { width: 100% !important; }
}

@media only screen and (max-device-width: 479px) {
/* mobile-specific CSS styles go here */
 .tablescale { width: 325px !important; margin: 0 !important; }
 .imgscale {
 width: 100% !important;
 height: auto !important;
 margin: auto !important;
 }
}
</style>

Assuming that the examples in this guide have made sense so far, we’re going to
start looking at more advanced techniques for adapting your email for mobile
devices.

% Building responsive layouts

While one-column HTML email layouts are generally the way to go when
optimizing your newsletter for mobile devices, there’s an elegant way to create
responsive two-column layouts, without resorting to mile-long stylesheets in
media queries.

While two-column layouts often allow more content to be featured above the fold
on desktop email clients like Outlook, they’re a pain to read and navigate on mobile
devices. Fortunately, this can be fixed with a bit of coding.

One of the golden rules of email design is ‘where possible, use HTML attributes
instead of CSS’. Whereas CSS support can be fairly flaky across the gamut of email
clients, attributes tend to be rock solid. For example, attributes like align=”left”
and cellpadding=“10” are far more reliable than their approximate CSS equivalents,
float: left; and padding: 10px;. It’s exactly these attributes we’ll be using when
building our two-to-one column layout.

Let’s look at such a layout in Outlook 2007:

In the example above, we have a 640px-wide container table, with two 300px-
wide tables nested inside to form columns, similar to our previous examples.
These nested columns have cellpadding=”10″ applied to stop the content from
pressing hard against the edges.

When coding for the web, we’d generally apply float: left; to the left-hand column,
to get them sitting side-by-side. But in email, instead we can use align=”left”. As
long as the container table width is more than or equal to the combined width of
the two columns, both will fit nicely in this fashion.

https://github.com/sergeyleschev

Here’s the simplified code for the two-column layout so far:

The rendered result:

<table width="640" border="0" cellpadding="0" cellspacing="0">
 <tr>
 <td>
 <table width="300" border="0" cellspacing="0" cellpadding="10" align="left">
 <tr>
 <td>Column Left Content</td>
 </tr>
 </table>
 <table width="300" border="0" cellspacing="0" cellpadding="20" align="right">
 <tr>
 <td></td>
 </tr>
 </table>
 </td>
 </tr>
</table>

https://github.com/sergeyleschev

If the container table is 640px wide, you’ll get a two-column layout. But any
skinnier than this and the right column will wrap under the left column. Make it the
same width as the column tables (320px) and you’ve got a flush, one-column
layout that fits an iPhone display exactly, with no zooming required.

One-line media query to our HTML code:

The result is a responsive layout that displays two columns on desktop and web
clients, then switches to one column in iPhone Mail and the default Android email
client.

Adding Wikipedia-style progressive disclosure

On the web, many responsive sites convert luxurious long-form content into items
compressed for mobile devices. This is typically by using a technique referred to
as progressive disclosure. This involves hiding content behind an interactive
element like a button or link, then displaying it on click or tap.

Wikipedia uses progressive disclosure, as do a lot of mobile applications.

<style type="text/css">
 @media only screen and (max-device-width: 480px) {
 .tablescale {
 width:100% !important;
 Margin: 0 !important;
 }
 }
</style>

<table width="640" border="0" cellpadding="0" cellspacing="0" class="tablescale">

Let’s say we have an email newsletter with multiple articles. In desktop email
clients, we want a heading and text to display in each article, like so:

However on mobile clients, we only want the heading to display, alongside a
show/hide button (which toggles the text). This turns the email into an interactive
table of contents, dramatically shortening the message length:

https://github.com/sergeyleschev

To do this, we’ll firstly need to turn to our HTML code and create an article with a
heading, some text, and a show/hide button. We’ll also add a couple of classes to
display the show/hide buttons exclusively on mobile devices.

https://github.com/sergeyleschev

Here’s a simplified version of the code used for each of the articles:

Take note the classes mobilehide, mobileshow and article—these will be handling
most of the action.

In our stylesheet, we’ll hide the show/hide button when the email displays in
desktop and web email clients, by using display: none; in our stylesheet like so:

.mobileshow a, .mobilehide a {
 display: none !important;
}

To ensure that the show/hide buttons are only displayed on mobile devices, we’ll
turn to our media query. Here’s the code, including the earlier .mobileshow and
.mobilehidesnippet and some webkit-friendly button styling for good measure:

@media only screen and (max-device-width: 480px) {
 .mobileshow a, .mobilehide a {
 display: block !important;
 color: #fff !important;
 background-color: #aaa;
 border-radius: 20px;

<td>
 <h4>First heading</h4>
 Hide Show
 <div class="article">
 <p class="bodytext">
 Pellentesque habitant morbi...
 </p>
 Read more...
 </div>
</td>

 padding: 0 8px;
 text-decoration: none;
 font-weight: bold;
 font-family: "Helvetica Neue", Helvetica, sans-serif;
 font-size: 11px;
 position: absolute;
 top: 25px;
 right: 10px;
 text-align: center;
 width: 40px;
 }
 .article {
 display: none;
 }
 a.mobileshow:hover {
 visibility: hidden;
 }
 .mobileshow:hover + .article, .article:hover {
 display: inline !important;
 }
}

And, if things go well, the result is an email with show/hide buttons that toggle
content on the iPhone.

Outlook and the 120 DPI issue

Outlook continues to be widely used among many businesses, and thus should not
be ignored when thinking about your responsive email design. So let’s breakdown
the 120 DPI issue and how we can code around it.

DPI stands for dots per inch and is a unit of measurement for screen resolutions.
Standard resolution is typically set to 96 DPI. However, with newer, higher-DPI
displays, this resolution is scaled to 120 DPI.

When the DPI is scaled to 120, it will affect your text size and images, while your

containers maintain their original widths, thus breaking your email. Here’s an
example without 120 DPI scaling:

And here’s that same example with 120 DPI scaling:

This problem occurs when Microsoft Word is used to render an email, and is most
common in Outlook 2007 through 2013 versions. This scaling issue continues to
be a thorn in the side of many email developers and designers as this zoomed view

https://github.com/sergeyleschev
https://github.com/sergeyleschev

often stretches your images, enlarges your text, and creates an overall poor user
experience.

Using our previous code examples, let’s create a truly responsive template that
works both in mobile and desktop.

The first step is to enable VML or Vector Markup Language, and scaled images in
the "head" of your email.

The second step to fix this issue is to add inline styles to your "tables" and other
tags such as the image tag, by re-identifying the width. A general rule of thumb, if
you declare the width as anything other than 100% in a tag you should re-identify
within a style.

Here’s the code we created for our two-column layout with the added inline-styles.

@media only screen and (max-device-width: 480px) {

/* outlook-mso specific styles*/
<!--[if mso]>
 <style type="text/css">
 body, table, td {font-family: Arial, Helvetica, sans-serif !important;}
 </style>
<![endif]-->

/* outlook scaled image solution */

<!--[if gte mso 9]>
 <xml>
 <o:OfficeDocumentSettings>
 <o:AllowPNG/>
 <o:PixelsPerInch>96</o:PixelsPerInch>
 </o:OfficeDocumentSettings>
 </xml>
<![endif]-->

Now that we have that new code, here’s the same rendering above with 120 DPI,
now totally responsive with the new code additions:

<table width="640" border="0" cellpadding="0" cellspacing="0" style=”width: 640px;”>
 <tr>
 <td>
 <table width="300" border="0" cellspacing="0" cellpadding="10" align="left" style=”width: 300px;”>
 <tr>
 <td width="300" align="left" style=”width: 300px;”>Column Left Content</td>
 </tr>
 </table>
 <table width="300" border="0" cellspacing="0" cellpadding="20" align="right" style=”width: 300px;”>
 <tr>
 <td width="300" align="left" style=”width: 300px;”></td>
 </tr>
 </table>
 </td>
 </tr>
</table>

https://github.com/sergeyleschev

The text and images are larger, but everything is now in proper alignment.

If you want to learn more about Outlook scaling issues, check out Courtney
Fantinato’s article “Correcting Outlook DPI Scaling Issues.”

& Targeting devices with media queries

You may have noticed that we’ve been using two standard media queries in this
guide: @media only screen and (max-device-width: 640px) { … } and @media only
screen and (max-device-width: 479px) { … }. This is great for targeting Apple
iPhones and other handheld devices that make up the majority of mobile email
client share.

But if you or your clients want to target tablets, larger-screen Android devices, and
some of the more exotic screen resolutions in the mobile ecosystem, then you’ll
need both unique media queries and unique styles to match.

Fine-tuning your media queries

Let’s go back to the max-device-width: 479px rule in our earlier media query. What
this tells mobile email clients (and browsers) is that below the 479px threshold, a
mobile-friendly layout defined therein should be displayed. Above that, CSS styles
outside of the media query should be used.

But the dimensions you can design for can be even more specific than that. For
example, only targeting displays that are 320px or more in width, but smaller than,
or equal to 480px. Here’s an example:

What a lot of folks don’t know is that media queries can be quite focused. Apart
from designing around a range of widths and heights, you can also design for

@media only screen and (min-device-width: 320px) and (max-device-width: 480px) { ... }

https://www.courtneyfantinato.com/correcting-outlook-dpi-scaling-issues/
https://www.w3.org/TR/css3-mediaqueries/#media1

screen orientations (e.g. portrait and landscape) and pixel ratios (how the width of
each pixel in an image compares to the width they’re displayed at).

This provides the ability to target devices with obsessive precision. Create an
iPad-specific. Target devices with retina displays. While the effort that goes into
adding targeted styles may often outweigh the benefits, sometimes it takes only a
couple of lines of code to get an email newsletter looking edge-to-edge perfect on
both your phone and favorite tablet.

Our friend Andy Clarke created a wonderful boilerplate for targeting popular
devices. It’s a great starting point for designing and building email designs that
aren’t limited to two views each side of 480px.

Being paranoid about Android

Despite the words stated in the previous section, there are those who are critical
of focusing on creating layouts around fixed widths like 480px, commonly known
in the industry as ‘breakpoints’. As Marc Drummond argues: “If you are using
responsive web design techniques (and you probably should be!), then this means
that using default media query device-width breakpoints is mostly pointless.” —
Marc Drummond, “Responsive web design default breakpoints are dead”

Marc acknowledges that there are plenty of breakpoints that exist outside of
something like Andy Clarke’s earlier boilerplate — particularly amongst Android
devices. Besides, new mobile devices come out all the time, so the media query
you’re using to target the top-of-the-line Android handset today may be
redundant tomorrow.

Building fluid layouts with media queries

The proposed alternative is to design fluid layouts that gracefully adjust to the
width of the viewport.

https://stuffandnonsense.co.uk/blog/this_is_the_new_320_and_up
https://www.marcdrummond.com/responsive-web-design/2011/12/29/default-breakpoints-are-dead
https://stuffandnonsense.co.uk/blog/320_and_up

By using a simple media query that applies a percentage width to elements—
instead of fixed widths, like 320px—it’s possible for your newsletters to feature
content that has a standard desktop view, but stretches and contracts to fit below
a certain viewport width. As a result, the newsletter can display optimally in a
variety of settings, from larger preview planes to smaller phones like iPhone 7.

Finally, a word of advice: While it’s very easy to become fanatical about tailoring
your responsive email design for specific devices, don’t lose track of the big
picture.

https://github.com/sergeyleschev

If 85% of your mobile-toting subscribers are viewing your email in 320px x 480px
viewports, don’t feel like you have to create a @media query for every device.
Creating a fluid design that can scale using a combination of percentages and
defined pixel widths you will be able to cover a large percentage of your
subscribers.

' Optimizing images for mobile

While phone screen sizes have been steadily increasing over the years along with
screen resolution, it can be tempting to include more and more images in your
emails. But a word of caution: While images can bring an extra wow factor to your
emails, images should always be thoughtfully added with accessibility and mobile
load times top of mind.

In this chapter, we’ll look at some techniques that take advantage of supported
CSS properties like background-image. These techniques will not only allow you to
display mobile-optimized images throughout your designs, but ensure they look
crisp at any width.

Using background images for better headers

Support and the use of background images have been on the rise in the last
couple of years thanks in part to increased CSS support utilizing all the benefits
that media queries can bring.

One benefit of the increased support is the ability to put live text on images.
Another benefit is being able to substitute images when an email campaign is
viewed on a mobile device by hiding the original and letting the beautiful, mobile-
friendly image shine through.

Background images and live text

In the past, if you wanted to include text on an image, it was created as a single
graphic. And if that image didn’t load, you were at the mercy of your alt text. Now,
with greater support for background images, you can have live text and buttons
along with the beautiful images.

Let’s see how this is done.

Background images in Outlook: setting up a DOCTYPE At the top of your HTML
email you’ll need to declare the DOCTYPE. Doing so informs the browser that this
will be an HTML document.

Next, we’ll set up our HTML tag, declaring the language as en, which will tell
screen readers that this email is written in English. If you’re writing emails in other
languages, W3Schools.com has created a list of ISO language codes.

The second half of this code will be a VML or Vector Markup Language
declaration, so Microsoft Outlook will allow us to create background images.

<html xmlns="https://www.w3.org/1999/xhtml" lang="en" xml:lang="en"
xmlns:v="urn:schemas-microsoft-com:vml"
xmlns:o="urn:schemas-microsoft-com:office:office">

Next, we’ll insert our 120 DPI scaling to target Outlook 2007-2013 and ensure our
email scales correctly. This code is placed in the "head" tag and outside of the
"style" tag.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "https://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

https://www.w3schools.com/tags/ref_language_codes.asp

<!--[if gte mso 9]><xml>
<o:OfficeDocumentSettings>
<o:AllowPNG/>
<o:PixelsPerInch>96</o:PixelsPerInch>
</o:OfficeDocumentSettings>
</xml><![endif]-->

The top of your email should look something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "https://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="https://www.w3.org/1999/xhtml" lang="en" xml:lang="en"
xmlns:v="urn:schemas-microsoft-com:vml"
xmlns:o="urn:schemas-microsoft-com:office:office">

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<!--[if !mso]><!-->
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<!--<![endif]-->
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Email Sample</title>

<style type="text/css">
 html { width: 100%; }

 @media only screen and (max-width: 600px) {
 /* Table styles go here */
 }

 @media only screen and (max-width: 479px) {
 /* mobile styles go here */
 }
</style>

Next we’ll set up the tables and background image.

Within the "td" is where we’ll add a style and input our background image,
declaring the background-position, background-size, and width.

This code will give your email a solid base that will render correctly in Gmail and
Apple Mail, including iPhone. But we’re not done yet, we need to make this
background bulletproof for Outlook.

<!--[if gte mso 9]><xml>
 <o:OfficeDocumentSettings>
 <o:AllowPNG/>
 <o:PixelsPerInch>96</o:PixelsPerInch>
 </o:OfficeDocumentSettings>
</xml><![endif]—>

</head>

https://github.com/sergeyleschev

Background images in Outlook: bulletproof backgrounds

Stig Morten Myre developed a popular technique to create these bulletproof
backgrounds, and even created a handy background image builder. The additional
VML, Microsoft’s Vector Markup Language, will allow our background image to
render correctly in Outlook, specifically 2007-2019.

If your image is a simple repeated pattern or isn’t required to line up in a particular
way, then use the same url link for both your "td" and VML.

However, if you don’t have a repeated pattern background, it’s recommended to
have two versions of your image. The first image that’s linked in your "td" should
be double the size (i.e. If your email body is 600px wide, your image should be
1200px to render correctly on Retina displays like the new iPhone). The second
image that’s included in your VML should be the exact size (i.e. email is 600px
wide, then image is 600px wide).

Here’s how this could look: In this first example, the same url is used for both, with
image size at 1200px wide.

https://github.com/sergeyleschev

In this comparison, a different url is used in the "td". The image size is 1200px, the
VML image url is 600px.

While both examples allow for enough room around the live text, the second
example is more visually striking and will more accurately mimic the intended
layout and design.

Let’s break down what’s happening here. First, we’ll create a conditional statement
[if gte mso 9]. This code creates an if then statement, showing that if Microsoft
Office then replace with the following code.

Next we’ll declare that this is VML, and set the style with width and height that is
appropriate for your selected image. We’ll use the v:fill tag to identify what image
URL will be used.

Finally, we’ll use the v:shape tag to identify the position, and, as a best practice,
restate the width and height and then place our end cap to identify what code will
be replaced.

https://github.com/sergeyleschev

Here’s what it should look like:

So let’s put it all together.

<!--[if gte mso 9]>
 <v:rect xmlns:v="urn:schemas-microsoft-com:vml" fill="true" stroke="false" style="width: 600px; height: 320px;">
 <v:fill type="tile" src="https://engage.sailthru.com/rs/500-BIA-880/images/Hiking600sm.jpg" color="#ffffff" />
 </v:rect>
 <v:shape style="position:absolute;width:600px; height: 320px;">
 <![endif]-->
 <div>
<!-- code we are replacing -->
</div>

<!--[if gte mso 9]>
 </v:shape>
 <![endif]-->

<table class="tablescale" width="600" align="center" bgcolor="#ffffff" cellpadding="0" cellspacing="0" border="0">
 <tr>
 <td width="600" style="border-collapse:collapse; mso-table-lspace:0pt; mso-table-rspace:0pt; background-image: url('https://engage.sailthru.com/rs/500-BIA-880/images/Hiking-Image.jpg'); background-repeat: no-repeat; background-position: top center; background-size: cover; width: 600px;">
 <!--[if gte mso 9]>
 <v:rect xmlns:v="urn:schemas-microsoft-com:vml" fill="true" stroke="false" style="width: 600px; height: 320px;">
 <v:fill type="tile" src="https://engage.sailthru.com/rs/500-BIA-880/images/Hiking600sm.jpg" color="#ffffff" />
 </v:rect>
 <v:shape id="NameHere" style="position:absolute;width:600px; height: 320px;">
 <![endif]-->
 <div>
 <table class="full" align="center" width="600" cellpadding="0" cellspacing="0" border="0" style="width: 600px;">
 <tr>
 <td class="left_header" align="center" width="600" style="font-family: Helvetica, Arial, 'sans-serif'; font-size: 35px; line-height: 40px; color:#191919; padding-left: 35px; padding-right: 35px; padding-top: 30px; padding-bottom: 200px; font-weight: 500; width: 600px; ">
 Are you ready for your next adventure?
 </td>
 </tr>
 </table>
 </div>

It’s generally recommended that images be resized to fit within a viewport of
mobile devices. But there are special occasions when your design doesn’t allow
this, resulting in a small image with illegible text.

Using unique images for mobile devices

If using a background image with live text (as seen in the example above) is not an
option, you can create a unique image specifically for mobile devices. This can be
accomplished by surrounding the image in a table cell or "div", then creating a
media query that hides the original and shows another header image as a
background image instead:

 <!--[if gte mso 9]>
 </v:shape>
 <![endif]-->
 </td>
 </tr>
</table>

@media only screen and (max-device-width: 479px) {
 .headerimg {
 background-image: url(https://yourdomain.com/images/header-325.png);
 width: 100% !important;
 height: 115px !important;
 }
 .imgheader {
 display: none;
 }
}

Here’s how things look before and after the header images have been swapped
out:

<table width="100%" border="0" cellspacing="0" cellpadding="0">
 <tr>
 <td class="headercell">

 </td>
 </tr>
</table>

https://github.com/sergeyleschev

An advantage to using this technique is that you can shorten the length of emails
by providing significantly shorter images. Or you can restyle your images and text
to enhance the mobile experience. When it comes to mobile email, the shorter, the
better.

Resizing images for fluid layouts

The issue with the background image swap method above is that it’s really only
effective with static-width email designs.

These days, mobile devices can come in all sorts of shapes and sizes, therefore
making fluid email layouts a popular option.

While the obvious solution seems to be to set background-size: 100% in the earlier
media query, as Elliot Jay Stocks points out, the better option is to use
background-size: cover:

@media only screen and (max-width: 600px) {
 .imgheader {
 width: 100% !important;
 }
}
@media only screen and (max-width: 479px) {
 .headerimg {
 background-image: url(https://engage.sailthru.com/rs/500-BIA-880/images/hero_img_mobile.jpg);
 width: 100% !important;
 height: 300px !important;
 background-position: center !important;
 background-repeat: no-repeat !important;
 }
 .imgheader {
 display: none;
 }
}

https://elliotjaystocks.com/blog/better-background-images-for-responsive-web-design/

Serving high-res images for Retina displays

Our final tip is in regards to getting images to display as sharply as possible on
Apple’s Retina displays. This is one that we’ve covered before, but given that these
displays aren’t going away anytime soon, it’s worth a recap.

The trick is to create key images at twice the size you actually plan on displaying
them, thus making the image look super crisp on iPhone 11 and iPad displays. For
example, using our earlier background image hack, we’d create a header image
that was really 600px x 300px (e.g. https://image.url600@2x.jpg), but then shrink
it down for mobile screens.

Here’s how the media query would look:

@media only screen and (max-width: 600px) {
 .imgheader {
 width: 100% !important;
 }
}

@media only screen and (max-width: 479px) {
 .headerimg {
 background-image: url(https://image.url200@2x.jpg);
 width: 100% !important;
 height: 150px !important;
 background-position: center !important;
 background-repeat: no-repeat !important;
 }
 .imgheader {
 display: none;
 }
}

If you specifically want to target Retina displays with a special stylesheet, you can
use this CSS declaration instead:

https://en.wikipedia.org/wiki/Retina_display

@media all and (min-device-pixel-ratio : 1.5) { ... }

While doubling the size of your images will produce sharp images for larger
displays (i.e. iPads and tablets), they can also weigh your emails down, creating
slow load times and an overall poor experience for your subscribers.

You can help prevent slow load times with the Save for web options when you
export your images from Photoshop or Sketch. You can also utilize an image
compressor like TinyPng. For more information on using retina images, we
recommend reading this post by Litmus.

(Optimizing your subscribe forms

Optimizing your email campaigns for mobile isn’t just limited to making sure your
newsletter can be read on small screens. After all, what’s the point of sending
mobile-optimized campaigns if mobile users can’t subscribe to your lists in the
first place?

The good news is that mobile devices like iPhone and Android generally do a good
job of making forms at least remotely usable these days. However, there are a
couple of things designers and coders can do to make them as easy to use as
possible. The obvious benefit to optimizing your forms is that they require less
time and effort to fill in on a mobile device. To you, this means higher completion
rates and more subscribers.

We’ll cover a couple of pointers, and feature a simple example you can use as a
starting point for your own subscribe forms.

Top-aligned labels—A common issue when using forms on a mobile device is
having labels that reside out of sight when a form field is selected in a
browser. At the initial zoom level, a left-aligned label like Enter your email

https://tinypng.com/
https://www.litmus.com/blog/understanding-retina-images-in-html-email

address may be visible, but as soon as you start entering text, the viewport
zooms in and the label is flung out of sight. The solution is to either use a top-
aligned label, or add the form label as a text-field value. The latter requires
less vertical real estate, but can be a little annoying if the field you’ve just
started filling in was initially hidden by the phone’s Form Assistant or
keyboard.

Use input type=”email”—If you use input type=”email” on the email address
form field, a special keyboard will display in iOS devices, featuring commonly
used characters like @.

Narrow down your forms—Use fluid layouts for mobile devices, as you can’t
predict the viewport’s dimensions or orientation is a best practice. Simply
making a text field’s width 80% of the viewport width can massively improve
the appearance and usability of your subscribe forms.

Be mindful of multi-option fields—While on the subject of narrow layouts, it’s
prudent to force all content to flow in a single column—particularly
checkboxes. Often drop-down lists are a better option over radio buttons and
reduce the amount of scrolling required to navigate the form. After you’ve
created a form, be sure to test it, then have your co-workers test it on their
phones to ensure your form is thumb-friendly.

Take a stand on scale—Finally, a lot of these tips here haven’t been specific to
forms, but more like web design in general. Included is the idea of setting the
initial scale or zoom on a mobile device using a viewport meta tag, especially
when building standalone forms. When applied, they can prevent the user
accidentally zooming in unnecessarily and losing sight of most of the form.
Here’s what a typical viewport meta tag looks like in the head of an HTML
page: <meta name = “viewport” content = “width = device-width, user-
scalable = no” />. For a couple of variants on this, check out Apple’s viewport
meta tag documentation.

Creating mobile-friendly plain-text email

Not wanting to limit our advice to HTML email design, we wanted to add some
pointers for optimizing plain-text campaigns.

When it comes to formatting plain-text emails, there are two camps: those who
add a line break every 60-65 characters to their message, and those who don’t.
Both have pros and cons, depending on which email client your message is viewed
in.

60-65 character limit works best in desktop and webmail clients. This is because
there’s effectively no limit to how wide paragraphs of text can run in most reading
windows or preview panes. Paragraphs of text can become very much unreadable
after 60 characters or so. Traversing from the end of one long line to the beginning
of another is just too much visual work for effective scanning.

However, on mobile devices, things are very different. In Apple Mail on iPhone, a
65-character line break combined with wrapping text results in a very jagged
message. It’s arguably worse than reading an infinitely long line of text.

If you’re sending HTML email with a plain-text version containing line breaks, most
mobile email clients won’t ever have to fall back to viewing it. So it isn’t quite time
to undo the app’s handiwork when it automatically creates a nicely formatted text-
version of your HTML campaign. However, if you’re sending plain-text campaigns
only, it’s worth having a look at your email client usage reports when deciding
which way to go. If you have plenty of subscribers reading their email on a mobile
device, it may not be an appealing idea to add your own line breaks.

) Case study: Twitter

Let’s put some of these techniques into practice by applying them to a real-world
email. Not just any email, but one that’s sent to millions of people every day.

In the not-so-distant past, Twitter’s email notifications were subpar on mobile
devices. The problem was this: a combination of tiny text and wide layouts pushing
out the zoom made them nearly unreadable on small screens.

In just five minutes, we applied a simple fix that made a world of difference to the
usability and readability of their notifications. And it may potentially help you
significantly improve how your email campaigns display on mobile devices, too.

In this case study, we’ll show you how we took a humble email notification and
turned it into something tweet-worthy when viewed in iPhone or Android Mail, or
any mobile email client that supports media queries.

Taming the tiny text First of all, we wanted to approach the most apparent issue
with Twitter’s notifications: tiny text. The reason why the text looks so small is
because the 710px-wide layout forces the email client on mobile devices to zoom
out significantly to view the entire width of the message. Let’s address this with a
media query targeting small displays:

@media only screen and (max-width: 479px) { ... }

If you’ve read much on responsive email design, you may know that you add these
declarations to your "style" tags. The stylesheets within can only be interpreted by
HTML email clients that meet the @media-only screen and (max-width: 479px)
criteria. So let’s put it to use on adapting the layout here.

First up, there are two tables surrounding the body of the email message:

We’re going to bring them down to size by adding classes wrappertable,
wrappercell and structure:

Now that we have something to target, let’s get to work with these classes in our
media query:

@media only screen and (max-device-width: 479px) {
 body { width: 320px !important; }
 .wrappertable { width: 320px !important; }
 .structure { width: 300px !important; }
}

The widths used above are significant, as on the iPhone in particular, the display
width is 320px in portrait orientation. By narrowing the email layout to 320px, it will
be viewed at 100% zoom by default, which means that not only will the whole
design be visible, but text and images will look crisp, too.

<table cellspacing="0" cellpadding="0" border="0" width="100%">
<tr>
 <td style="background-color:#e9eff2; padding: 30px 15px 0;">
 <table cellspacing="0" cellpadding="0" border="0" align="center" width="710" style="font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 16px; color: #333;">

<table cellspacing="0" cellpadding="0" border="0" width="100%" class="wrappertable">
 <tbody>
 <tr>
 <td style="background-color:#e9eff2; padding:30px 15px 0" class="wrappercell">
 <table cellspacing="0" cellpadding="0" border="0" align="center" width="710" style="font-family:'Helvetica Neue', Helvetica, Arial, sans-serif;font-size:16px;color:#333" class="structure">

Putting a harness on the header image

The above technique would be all well and good if it wasn’t for that infernally wide
‘Twitter’ header image. So we’ll do something crafty and split the header image
into three images. Sections which don’t need to be displayed in our new, narrow
layout can simply be hidden. Here’s the original code:

And here it is, with the header image in three pieces:

You may have noticed the class logo on https://yourdomain.com/logo-left.png and
https://yourdomain.com/logo-right.png. Hiding these bits is pretty straightforward
—simply add the following to our existing media query:

.logo { display: none !important; }

At last, we’ve got a header image and layout that’s trimmed down to size on mobile
screens.

Another way to get the same result without slicing images is to create a table row
or "tr" with a background color and then place your logo in the "td".

https://yourdomain.com/logo-left.png
https://yourdomain.com/logo-right.png

Here’s what that code would look like:

Now, on top of the above re-factors, we added some extra padding around
elements and adjusted font sizes to taste.

<table align="center" width="600" bgcolor="#3BC5F5" cellpadding="0" cellspacing="0" border="0" style="border-collapse:collapse; mso-table-lspace:0pt; mso-table-rspace:0pt; width: 600px;">
 <tr>
 <td width="600" align="left" valign="bottom" class="logo" style="margin: 0; padding-bottom: 20px; padding-top: 20px; padding-left: 30px; font-size:18px; color:#ffffff; font-family: Helvetica, Arial, sans-serif; width: 600px; ">

 </td>
 </tr>
</table>

https://github.com/sergeyleschev

Licenses & certifications

! LeetCode Global TOP 300 (TypeScript: Certificate, Sources: TypeScript).

! Golden Award for the Year of the Tiger Challenge (TypeScript: Certificate,
Sources: Codility).

2022 June LeetCode Challenge (2022-06-30).

2022 May LeetCode Challenge (2022-05-31).

2022 Apr LeetCode Challenge (2022-04-30).

LeetCode Dynamic Programming (2022-05-07).

Graph Theory (2022-04-30).

SQL (2022-04-26).

Algorithm I (2022-04-30), Algorithm II (2022-05-21).

Data Structure I (2022-04-30), Data Structure II (2022-05-21).

Binary Search I (2022-04-28), Binary Search II (2022-05-18).

Programming Skills I (2022-04-28), Programming Skills II (2022-05-18).

LinkedIn Skill Asessment (Front-End): Front-end Development, Angular,
React, Javascript, HTML, CSS, jQuery.

LinkedIn Skill Asessment (Back-End): Node.js, Java, Spring Framework, Scala,
C#, .NET Framework, Unity, Python (Programming Language), Django, PHP, C
(Programming Language).

LinkedIn Skill Asessment (Databases): MongoDB, NoSQL, Transact-SQL (T-
SQL), MySQL.

LinkedIn Skill Asessment (Infra/DevOps): Bash, Git, Amazon Web Services
(AWS), AWS Lambda, Google Cloud Platform (GCP), Microsoft Azure,
Hadoop, IT Operations.

https://leetcode.com/sergeyleschev/
https://github.com/sergeyleschev/leetcode-typescript
https://app.codility.com/cert/view/certQBA3EW-QESXM38DNR3SXMYZ/
https://github.com/sergeyleschev/codility-swift
https://leetcode.com/sergeyleschev
https://leetcode.com/sergeyleschev
https://leetcode.com/sergeyleschev
https://leetcode.com/sergeyleschev
https://leetcode.com/sergeyleschev
https://leetcode.com/sergeyleschev
https://leetcode.com/sergeyleschev
https://leetcode.com/sergeyleschev
https://leetcode.com/sergeyleschev
https://leetcode.com/sergeyleschev
https://leetcode.com/sergeyleschev
https://leetcode.com/sergeyleschev
https://leetcode.com/sergeyleschev
https://leetcode.com/sergeyleschev
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Front-end%20Development/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Angular/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/React/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/JavaScript/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/HTML/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Cascading%20Style%20Sheets%20(CSS)/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/jQuery/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Node.js/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Java/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Spring%20Framework/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Scala/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/C%23/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/.NET%20Framework/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Unity/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Python%20(Programming%20Language)/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Django/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/PHP/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/C%20(Programming%20Language)/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/MongoDB/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/NoSQL/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Transact-SQL%20(T-SQL)/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/MySQL/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Bash/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Git/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Amazon%20Web%20Services%20(AWS)/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/AWS%20Lambda/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Google%20Cloud%20Platform%20(GCP)/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Microsoft%20Azure/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Hadoop/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/IT%20Operations/report/

Contacts

I have a clear focus on time-to-market and don't prioritize technical debt.

* #startups #management #cto #swift #typescript #database

$ Email: sergey.leschev@gmail.com

+ LinkedIn: https://linkedin.com/in/sergeyleschev

+ Twitter: https://twitter.com/sergeyleschev

+ Github: https://github.com/sergeyleschev

, Website: https://sergeyleschev.github.io

- PDF: Download

ALT: SIARHEI LIASHCHOU

leader, knowledge, qualifications, education, tips, skills, multitasking, references, success, work, job, tie, challenges,
abilities, impress, responsibility, future, weeknesses, benefits, results, team player, strengths, interview, degress, examples,
strengths, experienced, problem solver, candidate, agency, objective, initiative, team, dreams, conflict, can-do, training,
questions, job, work, career, created, swift, typescript, javascript, sql, nosql, postgresql, oracle, sql server, react, redux,
swiftui, objective-c, devops, aws, mongodb, pl/sql, angular, project management, nodejs, nextjs, nestjs, api, agile,
amplitude, analytics, appclip, appstore, bash, css, jira, confluence, git, graphql, html, html5, mvp, mvvm, nginx, ssh, prime
react, rest, teamcity, typeorm, uikit, uml, viper, widgets, xcode, json, linux, docker, mobx, tvOS, watchOS

mailto:sergey.leschev@gmail.com
https://www.linkedin.com/in/sergeyleschev/
https://twitter.com/sergeyleschev
https://github.com/sergeyleschev
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/sergeyleschev-responsive-email-design.pdf
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/sergeyleschev-ios-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-fullstack-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-fullstack-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-system-architect-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-system-architect-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-system-architect-roadmap.html
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/sergeyleschev-fullstack-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-fullstack-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-ios-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-ios-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-system-architect-roadmap.html
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/sergeyleschev-system-architect-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-system-architect-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-fullstack-roadmap.html
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/sergeyleschev-fullstack-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-fullstack-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-fullstack-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-system-architect-roadmap.html
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/sergeyleschev-ios-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-ios-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-fullstack-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-fullstack-roadmap.html
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/sergeyleschev-system-architect-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-system-architect-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-fullstack-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-fullstack-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-ios-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-ios-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-fullstack-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-system-architect-roadmap.html
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/sergeyleschev-system-architect-roadmap.html
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/sergeyleschev-fullstack-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-ios-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-system-architect-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-ios-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-ios-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-ios-roadmap.html
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/sergeyleschev-system-architect-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-system-architect-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-system-architect-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-ios-roadmap.html
https://sergeyleschev.github.io/sergeyleschev-ios-roadmap.html

