
S.Leschev System Architect

!

 Awards

Ranking #Dev: Global TOP 300 (Certificate)

https://leetcode.com/sergeyleschev/
https://leetcode.com/sergeyleschev/
https://leetcode.com/sergeyleschev/

The System Design

Design large-scale systems

System design is a broad topic. There is a vast amount of resources scattered
throughout the web on system design principles.

Index of system design topics

Summaries of various system design topics, including pros and cons.
Everything is a trade-off.

Each section contains links to more in-depth resources.

System design topics: start here
Step 1: Review the scalability video lecture

Step 2: Review the scalability article

Next steps

Performance vs scalability

Latency vs throughput

Availability vs consistency
CAP theorem

CP - consistency and partition tolerance

AP - availability and partition tolerance

Consistency patterns
Weak consistency

Eventual consistency

Strong consistency

Availability patterns
Fail-over

Replication

Availability in numbers

Domain name system

Content delivery network
Push CDNs

Pull CDNs

Load balancer
Active-passive

Active-active

Layer 4 load balancing

Layer 7 load balancing

Horizontal scaling

file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/#cp---consistency-and-partition-tolerance
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/#ap---availability-and-partition-tolerance

Reverse proxy (web server)
Load balancer vs reverse proxy

Application layer
Microservices

Service discovery

Database
Relational database management system (RDBMS)

Master-slave replication

Master-master replication

Federation

Sharding

Denormalization

SQL tuning

NoSQL
Key-value store

Document store

Wide column store

Graph Database

SQL or NoSQL

Cache
Client caching

CDN caching

Web server caching

Database caching

Application caching

Caching at the database query level

Caching at the object level

When to update the cache
Cache-aside

Write-through

Write-behind (write-back)

Refresh-ahead

Asynchronism
Message queues

Task queues

Back pressure

Communication
Transmission control protocol (TCP)

User datagram protocol (UDP)

Remote procedure call (RPC)

Representational state transfer (REST)

Security

Appendix
Powers of two table

Latency numbers every programmer should know

Additional system design

Real world architectures

Company architectures

Company engineering blogs

How to approach a system design questions

How to tackle a system design question.s

The system design is an open-ended conversation. You are expected to lead it.

You can use the following steps to guide the discussion. To help solidify this
process, work through the System design questions with solutions section using
the following steps.

Step 1: Outline use cases, constraints, and assumptions

Gather requirements and scope the problem. Ask questions to clarify use cases
and constraints. Discuss assumptions.

Who is going to use it?

How are they going to use it?

How many users are there?

What does the system do?

What are the inputs and outputs of the system?

How much data do we expect to handle?

How many requests per second do we expect?

What is the expected read to write ratio?

Step 2: Create a high level design

Outline a high level design with all important components.

Sketch the main components and connections

Justify your ideas

Step 3: Design core components

Dive into details for each core component. For example, if you were asked to
design a url shortening service, discuss:

Generating and storing a hash of the full url
MD5 and Base62

Hash collisions

file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/pastebin/sergeyleschev-system-design-roadmap.md
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/pastebin/sergeyleschev-system-design-roadmap.md
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/pastebin/sergeyleschev-system-design-roadmap.md

SQL or NoSQL

Database schema

Translating a hashed url to the full url
Database lookup

API and object-oriented design

Step 4: Scale the design

Identify and address bottlenecks, given the constraints. For example, do you need
the following to address scalability issues?

Load balancer

Horizontal scaling

Caching

Database sharding

Discuss potential solutions and trade-offs. Everything is a trade-off. Address
bottlenecks using principles of scalable system design.

Back-of-the-envelope calculations

You might be asked to do some estimates by hand. Refer to the Appendix for the
following resources:

Use back of the envelope calculations

Powers of two table

Latency numbers every programmer should know

Source(s) and further reading

Check out the following links to get a better idea of what to expect:

How to ace a systems design questions

The system design questions

Intro to Architecture and Systems Design questions

System design template

http://highscalability.com/blog/2011/1/26/google-pro-tip-use-back-of-the-envelope-calculations-to-choo.html
https://www.palantir.com/2011/10/how-to-rock-a-systems-design-interview/
http://www.hiredintech.com/system-design
https://www.youtube.com/watch?v=ZgdS0EUmn70
https://leetcode.com/discuss/career/229177/My-System-Design-Template

System design questions with solutions

Common system design questions with sample discussions, code, and
diagrams.

Solutions linked to content in the solutions/ folder.

Question

Design Pastebin.com (or Bit.ly) Solution

Design the Twitter timeline and search (or Facebook feed and
search)

Solution

Design a web crawler Solution

Design Mint.com Solution

Design the data structures for a social network Solution

Design a key-value store for a search engine Solution

Design Amazon's sales ranking by category feature Solution

Design a system that scales to millions of users on AWS Solution

file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/pastebin/sergeyleschev-system-design-roadmap.md
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/twitter/sergeyleschev-system-design-roadmap.md
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/web_crawler/sergeyleschev-system-design-roadmap.md
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/mint/sergeyleschev-system-design-roadmap.md
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/social_graph/sergeyleschev-system-design-roadmap.md
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/query_cache/sergeyleschev-system-design-roadmap.md
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/sales_rank/sergeyleschev-system-design-roadmap.md
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/scaling_aws/sergeyleschev-system-design-roadmap.md

Design Pastebin.com (or Bit.ly)

View solution

file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/pastebin/sergeyleschev-system-design-roadmap.md

Design the Twitter timeline and search (or Facebook feed and
search)

View solution

file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/twitter/sergeyleschev-system-design-roadmap.md

Design a web crawler

View solution

file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/web_crawler/sergeyleschev-system-design-roadmap.md

Design Mint.com

View solution

file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/mint/sergeyleschev-system-design-roadmap.md

Design the data structures for a social network

View solution

file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/social_graph/sergeyleschev-system-design-roadmap.md

Design a key-value store for a search engine

View solution

file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/query_cache/sergeyleschev-system-design-roadmap.md

Design Amazon's sales ranking by category feature

View solution

file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/sales_rank/sergeyleschev-system-design-roadmap.md

Design a system that scales to millions of users on AWS

View solution

file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/system_design/scaling_aws/sergeyleschev-system-design-roadmap.md

Object-oriented design questions with solutions

Common object-oriented design questions with sample discussions, code,
and diagrams.

Solutions linked to content in the solutions/ folder.

Note: This section is under development

Question

Design a hash map Solution

Design a least recently used cache Solution

Design a call center Solution

Design a deck of cards Solution

Design a parking lot Solution

Design a chat server Solution

System design topics: start here

New to system design?

First, you'll need a basic understanding of common principles, learning about what
they are, how they are used, and their pros and cons.

Step 1: Review the scalability video lecture

Scalability Lecture at Harvard

Topics covered:
Vertical scaling

Horizontal scaling

Caching

Load balancing

Database replication

Database partitioning

file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/object_oriented_design/hash_table/hash_map.ipynb
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/object_oriented_design/lru_cache/lru_cache.ipynb
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/object_oriented_design/call_center/call_center.ipynb
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/object_oriented_design/deck_of_cards/deck_of_cards.ipynb
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/object_oriented_design/parking_lot/parking_lot.ipynb
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/GitHub.iatemplate/Contents/Resources/solutions/object_oriented_design/online_chat/online_chat.ipynb
https://www.youtube.com/watch?v=-W9F__D3oY4

Step 2: Review the scalability article

Scalability

Topics covered:
Clones

Databases

Caches

Asynchronism

Next steps

Next, we'll look at high-level trade-offs:

Performance vs scalability

Latency vs throughput

Availability vs consistency

Keep in mind that everything is a trade-off.

Then we'll dive into more specific topics such as DNS, CDNs, and load balancers.

Performance vs scalability

A service is scalable if it results in increased performance in a manner
proportional to resources added. Generally, increasing performance means serving
more units of work, but it can also be to handle larger units of work, such as when

datasets grow.1

Another way to look at performance vs scalability:

If you have a performance problem, your system is slow for a single user.

If you have a scalability problem, your system is fast for a single user but slow
under heavy load.

Source(s) and further reading

A word on scalability

Scalability, availability, stability, patterns

http://www.lecloud.net/tagged/scalability/chrono
http://www.lecloud.net/post/7295452622/scalability-for-dummies-part-1-clones
http://www.lecloud.net/post/7994751381/scalability-for-dummies-part-2-database
http://www.lecloud.net/post/9246290032/scalability-for-dummies-part-3-cache
http://www.lecloud.net/post/9699762917/scalability-for-dummies-part-4-asynchronism
http://www.allthingsdistributed.com/2006/03/a_word_on_scalability.html
http://www.allthingsdistributed.com/2006/03/a_word_on_scalability.html
http://www.slideshare.net/jboner/scalability-availability-stability-patterns/

Latency vs throughput

Latency is the time to perform some action or to produce some result.

Throughput is the number of such actions or results per unit of time.

Generally, you should aim for maximal throughput with acceptable latency.

Source(s) and further reading

Understanding latency vs throughput

Availability vs consistency

CAP theorem

Source: CAP theorem revisited

In a distributed computer system, you can only support two of the following
guarantees:

Consistency - Every read receives the most recent write or an error

Availability - Every request receives a response, without guarantee that it
contains the most recent version of the information

https://community.cadence.com/cadence_blogs_8/b/sd/archive/2010/09/13/understanding-latency-vs-throughput
http://robertgreiner.com/2014/08/cap-theorem-revisited

Partition Tolerance - The system continues to operate despite arbitrary
partitioning due to network failures

Networks aren't reliable, so you'll need to support partition tolerance. You'll need
to make a software tradeoff between consistency and availability.

CP - consistency and partition tolerance

Waiting for a response from the partitioned node might result in a timeout error. CP
is a good choice if your business needs require atomic reads and writes.

AP - availability and partition tolerance

Responses return the most readily available version of the data available on any
node, which might not be the latest. Writes might take some time to propagate
when the partition is resolved.

AP is a good choice if the business needs allow for eventual consistency or when
the system needs to continue working despite external errors.

Source(s) and further reading

CAP theorem revisited

A plain english introduction to CAP theorem

CAP FAQ

The CAP theorem

Consistency patterns

With multiple copies of the same data, we are faced with options on how to
synchronize them so clients have a consistent view of the data. Recall the
definition of consistency from the CAP theorem - Every read receives the most
recent write or an error.

Weak consistency

After a write, reads may or may not see it. A best effort approach is taken.

This approach is seen in systems such as memcached. Weak consistency works
well in real time use cases such as VoIP, video chat, and realtime multiplayer
games. For example, if you are on a phone call and lose reception for a few

http://robertgreiner.com/2014/08/cap-theorem-revisited/
http://ksat.me/a-plain-english-introduction-to-cap-theorem
https://github.com/henryr/cap-faq
https://www.youtube.com/watch?v=k-Yaq8AHlFA

seconds, when you regain connection you do not hear what was spoken during
connection loss.

Eventual consistency

After a write, reads will eventually see it (typically within milliseconds). Data is
replicated asynchronously.

This approach is seen in systems such as DNS and email. Eventual consistency
works well in highly available systems.

Strong consistency

After a write, reads will see it. Data is replicated synchronously.

This approach is seen in file systems and RDBMSes. Strong consistency works
well in systems that need transactions.

Source(s) and further reading

Transactions across data centers

Availability patterns

There are two complementary patterns to support high availability: fail-over and
replication.

Fail-over

Active-passive

With active-passive fail-over, heartbeats are sent between the active and the
passive server on standby. If the heartbeat is interrupted, the passive server takes
over the active's IP address and resumes service.

The length of downtime is determined by whether the passive server is already
running in 'hot' standby or whether it needs to start up from 'cold' standby. Only
the active server handles traffic.

Active-passive failover can also be referred to as master-slave failover.

http://snarfed.org/transactions_across_datacenters_io.html

Active-active

In active-active, both servers are managing traffic, spreading the load between
them.

If the servers are public-facing, the DNS would need to know about the public IPs
of both servers. If the servers are internal-facing, application logic would need to
know about both servers.

Active-active failover can also be referred to as master-master failover.

Disadvantage(s): failover

Fail-over adds more hardware and additional complexity.

There is a potential for loss of data if the active system fails before any newly
written data can be replicated to the passive.

Replication

Master-slave and master-master

This topic is further discussed in the Database section:

Master-slave replication

Master-master replication

Availability in numbers

Availability is often quantified by uptime (or downtime) as a percentage of time the
service is available. Availability is generally measured in number of 9s--a service
with 99.99% availability is described as having four 9s.

99.9% availability - three 9s

Duration Acceptable downtime

Downtime per year 8h 45min 57s

Downtime per month 43m 49.7s

Downtime per week 10m 4.8s

Downtime per day 1m 26.4s

99.99% availability - four 9s

Duration Acceptable downtime

Downtime per year 52min 35.7s

Downtime per month 4m 23s

Downtime per week 1m 5s

Downtime per day 8.6s

Availability in parallel vs in sequence

If a service consists of multiple components prone to failure, the service's overall
availability depends on whether the components are in sequence or in parallel.

In sequence

Overall availability decreases when two components with availability < 100% are in
sequence:

Availability (Total) = Availability (Foo) * Availability (Bar)

If both Foo and Bar each had 99.9% availability, their total availability in
sequence would be 99.8%.

In parallel

Overall availability increases when two components with availability < 100% are in
parallel:

Availability (Total) = 1 - (1 - Availability (Foo)) * (1 -
Availability (Bar))

If both Foo and Bar each had 99.9% availability, their total availability in parallel
would be 99.9999%.

Domain name system

Source: DNS security presentation

A Domain Name System (DNS) translates a domain name such as
www.example.com to an IP address.

DNS is hierarchical, with a few authoritative servers at the top level. Your router or
ISP provides information about which DNS server(s) to contact when doing a
lookup. Lower level DNS servers cache mappings, which could become stale due
to DNS propagation delays. DNS results can also be cached by your browser or OS
for a certain period of time, determined by the time to live (TTL).

NS record (name server) - Specifies the DNS servers for your
domain/subdomain.

MX record (mail exchange) - Specifies the mail servers for accepting
messages.

A record (address) - Points a name to an IP address.

CNAME (canonical) - Points a name to another name or CNAME
(example.com to www.example.com) or to an A record.

Services such as CloudFlare and Route 53 provide managed DNS services. Some
DNS services can route traffic through various methods:

http://www.slideshare.net/srikrupa5/dns-security-presentation-issa
https://en.wikipedia.org/wiki/Time_to_live
https://www.cloudflare.com/dns/
https://aws.amazon.com/route53/

Weighted round robin
Prevent traffic from going to servers under maintenance

Balance between varying cluster sizes

A/B testing

Latency-based

Geolocation-based

Disadvantage(s): DNS

Accessing a DNS server introduces a slight delay, although mitigated by
caching described above.

DNS server management could be complex and is generally managed by
governments, ISPs, and large companies.

DNS services have recently come under DDoS attack, preventing users from
accessing websites such as Twitter without knowing Twitter's IP address(es).

Source(s) and further reading

DNS architecture

Wikipedia

DNS articles

https://www.g33kinfo.com/info/round-robin-vs-weighted-round-robin-lb
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html#routing-policy-latency
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html#routing-policy-geo
http://superuser.com/questions/472695/who-controls-the-dns-servers/472729
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://technet.microsoft.com/en-us/library/dd197427(v=ws.10).aspx
https://en.wikipedia.org/wiki/Domain_Name_System
https://support.dnsimple.com/categories/dns/

Content delivery network

Source: Why use a CDN

A content delivery network (CDN) is a globally distributed network of proxy
servers, serving content from locations closer to the user. Generally, static files
such as HTML/CSS/JS, photos, and videos are served from CDN, although some
CDNs such as Amazon's CloudFront support dynamic content. The site's DNS
resolution will tell clients which server to contact.

Serving content from CDNs can significantly improve performance in two ways:

Users receive content from data centers close to them

Your servers do not have to serve requests that the CDN fulfills

Push CDNs

Push CDNs receive new content whenever changes occur on your server. You take
full responsibility for providing content, uploading directly to the CDN and
rewriting URLs to point to the CDN. You can configure when content expires and
when it is updated. Content is uploaded only when it is new or changed,
minimizing traffic, but maximizing storage.

Sites with a small amount of traffic or sites with content that isn't often updated
work well with push CDNs. Content is placed on the CDNs once, instead of being

https://www.creative-artworks.eu/why-use-a-content-delivery-network-cdn/

re-pulled at regular intervals.

Pull CDNs

Pull CDNs grab new content from your server when the first user requests the
content. You leave the content on your server and rewrite URLs to point to the
CDN. This results in a slower request until the content is cached on the CDN.

A time-to-live (TTL) determines how long content is cached. Pull CDNs minimize
storage space on the CDN, but can create redundant traffic if files expire and are
pulled before they have actually changed.

Sites with heavy traffic work well with pull CDNs, as traffic is spread out more
evenly with only recently-requested content remaining on the CDN.

Disadvantage(s): CDN

CDN costs could be significant depending on traffic, although this should be
weighed with additional costs you would incur not using a CDN.

Content might be stale if it is updated before the TTL expires it.

CDNs require changing URLs for static content to point to the CDN.

Source(s) and further reading

Globally distributed content delivery

The differences between push and pull CDNs

Wikipedia

https://en.wikipedia.org/wiki/Time_to_live
https://figshare.com/articles/Globally_distributed_content_delivery/6605972
http://www.travelblogadvice.com/technical/the-differences-between-push-and-pull-cdns/
https://en.wikipedia.org/wiki/Content_delivery_network

Load balancer

Source: Scalable system design patterns

Load balancers distribute incoming client requests to computing resources such
as application servers and databases. In each case, the load balancer returns the
response from the computing resource to the appropriate client. Load balancers
are effective at:

Preventing requests from going to unhealthy servers

Preventing overloading resources

Helping to eliminate a single point of failure

Load balancers can be implemented with hardware (expensive) or with software
such as HAProxy.

Additional benefits include:

SSL termination - Decrypt incoming requests and encrypt server responses
so backend servers do not have to perform these potentially expensive
operations

Removes the need to install X.509 certificates on each server

http://horicky.blogspot.com/2010/10/scalable-system-design-patterns.html
https://en.wikipedia.org/wiki/X.509

Session persistence - Issue cookies and route a specific client's requests to
same instance if the web apps do not keep track of sessions

To protect against failures, it's common to set up multiple load balancers, either in
active-passive or active-active mode.

Load balancers can route traffic based on various metrics, including:

Random

Least loaded

Session/cookies

Round robin or weighted round robin

Layer 4

Layer 7

Layer 4 load balancing

Layer 4 load balancers look at info at the transport layer to decide how to
distribute requests. Generally, this involves the source, destination IP addresses,
and ports in the header, but not the contents of the packet. Layer 4 load balancers
forward network packets to and from the upstream server, performing Network
Address Translation (NAT).

Layer 7 load balancing

Layer 7 load balancers look at the application layer to decide how to distribute
requests. This can involve contents of the header, message, and cookies. Layer 7
load balancers terminate network traffic, reads the message, makes a load-
balancing decision, then opens a connection to the selected server. For example, a
layer 7 load balancer can direct video traffic to servers that host videos while
directing more sensitive user billing traffic to security-hardened servers.

At the cost of flexibility, layer 4 load balancing requires less time and computing
resources than Layer 7, although the performance impact can be minimal on
modern commodity hardware.

Horizontal scaling

Load balancers can also help with horizontal scaling, improving performance and
availability. Scaling out using commodity machines is more cost efficient and

https://www.g33kinfo.com/info/round-robin-vs-weighted-round-robin-lb
https://www.nginx.com/resources/glossary/layer-4-load-balancing/

results in higher availability than scaling up a single server on more expensive
hardware, called Vertical Scaling. It is also easier to hire for talent working on
commodity hardware than it is for specialized enterprise systems.

Disadvantage(s): horizontal scaling

Scaling horizontally introduces complexity and involves cloning servers
Servers should be stateless: they should not contain any user-related
data like sessions or profile pictures

Sessions can be stored in a centralized data store such as a database
(SQL, NoSQL) or a persistent cache (Redis, Memcached)

Downstream servers such as caches and databases need to handle more
simultaneous connections as upstream servers scale out

Disadvantage(s): load balancer

The load balancer can become a performance bottleneck if it does not have
enough resources or if it is not configured properly.

Introducing a load balancer to help eliminate a single point of failure results in
increased complexity.

A single load balancer is a single point of failure, configuring multiple load
balancers further increases complexity.

Source(s) and further reading

NGINX architecture

HAProxy architecture guide

Scalability

Wikipedia

Layer 4 load balancing

Layer 7 load balancing

ELB listener config

https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
http://www.haproxy.org/download/1.2/doc/architecture.txt
http://www.lecloud.net/post/7295452622/scalability-for-dummies-part-1-clones
https://en.wikipedia.org/wiki/Load_balancing_(computing)
https://www.nginx.com/resources/glossary/layer-4-load-balancing/
https://www.nginx.com/resources/glossary/layer-7-load-balancing/
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-listener-config.html

Reverse proxy (web server)

Source: Wikipedia

A reverse proxy is a web server that centralizes internal services and provides
unified interfaces to the public. Requests from clients are forwarded to a server
that can fulfill it before the reverse proxy returns the server's response to the
client.

Additional benefits include:

Increased security - Hide information about backend servers, blacklist IPs,
limit number of connections per client

Increased scalability and flexibility - Clients only see the reverse proxy's IP,
allowing you to scale servers or change their configuration

SSL termination - Decrypt incoming requests and encrypt server responses
so backend servers do not have to perform these potentially expensive
operations

Removes the need to install X.509 certificates on each server

Compression - Compress server responses

Caching - Return the response for cached requests

Static content - Serve static content directly
HTML/CSS/JS

Photos

Videos

Etc

https://upload.wikimedia.org/wikipedia/commons/6/67/Reverse_proxy_h2g2bob.svg
https://en.wikipedia.org/wiki/X.509

Load balancer vs reverse proxy

Deploying a load balancer is useful when you have multiple servers. Often,
load balancers route traffic to a set of servers serving the same function.

Reverse proxies can be useful even with just one web server or application
server, opening up the benefits described in the previous section.

Solutions such as NGINX and HAProxy can support both layer 7 reverse
proxying and load balancing.

Disadvantage(s): reverse proxy

Introducing a reverse proxy results in increased complexity.

A single reverse proxy is a single point of failure, configuring multiple reverse
proxies (ie a failover) further increases complexity.

Source(s) and further reading

Reverse proxy vs load balancer

NGINX architecture

HAProxy architecture guide

Wikipedia

Application layer

Source: Intro to architecting systems for scale

Separating out the web layer from the application layer (also known as platform
layer) allows you to scale and configure both layers independently. Adding a new
API results in adding application servers without necessarily adding additional web
servers. The single responsibility principle advocates for small and autonomous

https://en.wikipedia.org/wiki/Failover
https://www.nginx.com/resources/glossary/reverse-proxy-vs-load-balancer/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
http://www.haproxy.org/download/1.2/doc/architecture.txt
https://en.wikipedia.org/wiki/Reverse_proxy
http://lethain.com/introduction-to-architecting-systems-for-scale/#platform_layer

services that work together. Small teams with small services can plan more
aggressively for rapid growth.

Workers in the application layer also help enable asynchronism.

Microservices

Related to this discussion are microservices, which can be described as a suite of
independently deployable, small, modular services. Each service runs a unique
process and communicates through a well-defined, lightweight mechanism to

serve a business goal. 1

Pinterest, for example, could have the following microservices: user profile,
follower, feed, search, photo upload, etc.

Service Discovery

Systems such as Consul, Etcd, and Zookeeper can help services find each other
by keeping track of registered names, addresses, and ports. Health checks help
verify service integrity and are often done using an HTTP endpoint. Both Consul
and Etcd have a built in key-value store that can be useful for storing config values
and other shared data.

Disadvantage(s): application layer

Adding an application layer with loosely coupled services requires a different
approach from an architectural, operations, and process viewpoint (vs a
monolithic system).

Microservices can add complexity in terms of deployments and operations.

Source(s) and further reading

Intro to architecting systems for scale

Crack the system design questions

Service oriented architecture

Introduction to Zookeeper

Here's what you need to know about building microservices

https://en.wikipedia.org/wiki/Microservices
https://smartbear.com/learn/api-design/what-are-microservices
https://www.consul.io/docs/index.html
https://coreos.com/etcd/docs/latest
http://www.slideshare.net/sauravhaloi/introduction-to-apache-zookeeper
https://www.consul.io/intro/getting-started/checks.html
http://lethain.com/introduction-to-architecting-systems-for-scale
http://www.puncsky.com/blog/2016-02-13-crack-the-system-design-interview
https://en.wikipedia.org/wiki/Service-oriented_architecture
http://www.slideshare.net/sauravhaloi/introduction-to-apache-zookeeper
https://cloudncode.wordpress.com/2016/07/22/msa-getting-started/

Database

Source: Scaling up to your first 10 million users

Relational database management system (RDBMS)

A relational database like SQL is a collection of data items organized in tables.

ACID is a set of properties of relational database transactions.

Atomicity - Each transaction is all or nothing

Consistency - Any transaction will bring the database from one valid state to
another

Isolation - Executing transactions concurrently has the same results as if the
transactions were executed serially

Durability - Once a transaction has been committed, it will remain so

There are many techniques to scale a relational database: master-slave
replication, master-master replication, federation, sharding, denormalization,
and SQL tuning.

Master-slave replication

The master serves reads and writes, replicating writes to one or more slaves,
which serve only reads. Slaves can also replicate to additional slaves in a tree-like

https://www.youtube.com/watch?v=kKjm4ehYiMs
https://en.wikipedia.org/wiki/Database_transaction

fashion. If the master goes offline, the system can continue to operate in read-only
mode until a slave is promoted to a master or a new master is provisioned.

Source: Scalability, availability, stability, patterns

Disadvantage(s): master-slave replication

Additional logic is needed to promote a slave to a master.

See Disadvantage(s): replication for points related to both master-slave and
master-master.

Master-master replication

Both masters serve reads and writes and coordinate with each other on writes. If
either master goes down, the system can continue to operate with both reads and
writes.

http://www.slideshare.net/jboner/scalability-availability-stability-patterns/

Source: Scalability, availability, stability, patterns

Disadvantage(s): master-master replication

You'll need a load balancer or you'll need to make changes to your application
logic to determine where to write.

Most master-master systems are either loosely consistent (violating ACID) or
have increased write latency due to synchronization.

Conflict resolution comes more into play as more write nodes are added and
as latency increases.

See Disadvantage(s): replication for points related to both master-slave and
master-master.

Disadvantage(s): replication

There is a potential for loss of data if the master fails before any newly written
data can be replicated to other nodes.

Writes are replayed to the read replicas. If there are a lot of writes, the read
replicas can get bogged down with replaying writes and can't do as many
reads.

The more read slaves, the more you have to replicate, which leads to greater
replication lag.

On some systems, writing to the master can spawn multiple threads to write in
parallel, whereas read replicas only support writing sequentially with a single

http://www.slideshare.net/jboner/scalability-availability-stability-patterns/

thread.

Replication adds more hardware and additional complexity.

Source(s) and further reading: replication

Scalability, availability, stability, patterns

Multi-master replication

Federation

Source: Scaling up to your first 10 million users

Federation (or functional partitioning) splits up databases by function. For
example, instead of a single, monolithic database, you could have three databases:
forums, users, and products, resulting in less read and write traffic to each
database and therefore less replication lag. Smaller databases result in more data

http://www.slideshare.net/jboner/scalability-availability-stability-patterns/
https://en.wikipedia.org/wiki/Multi-master_replication
https://www.youtube.com/watch?v=kKjm4ehYiMs

that can fit in memory, which in turn results in more cache hits due to improved
cache locality. With no single central master serializing writes you can write in
parallel, increasing throughput.

Disadvantage(s): federation

Federation is not effective if your schema requires huge functions or tables.

You'll need to update your application logic to determine which database to
read and write.

Joining data from two databases is more complex with a server link.

Federation adds more hardware and additional complexity.

Source(s) and further reading: federation

Scaling up to your first 10 million users

http://stackoverflow.com/questions/5145637/querying-data-by-joining-two-tables-in-two-database-on-different-servers
https://www.youtube.com/watch?v=kKjm4ehYiMs

Sharding

Source: Scalability, availability, stability, patterns

Sharding distributes data across different databases such that each database can
only manage a subset of the data. Taking a users database as an example, as the
number of users increases, more shards are added to the cluster.

Similar to the advantages of federation, sharding results in less read and write
traffic, less replication, and more cache hits. Index size is also reduced, which
generally improves performance with faster queries. If one shard goes down, the

http://www.slideshare.net/jboner/scalability-availability-stability-patterns/

other shards are still operational, although you'll want to add some form of
replication to avoid data loss. Like federation, there is no single central master
serializing writes, allowing you to write in parallel with increased throughput.

Common ways to shard a table of users is either through the user's last name
initial or the user's geographic location.

Disadvantage(s): sharding

You'll need to update your application logic to work with shards, which could
result in complex SQL queries.

Data distribution can become lopsided in a shard. For example, a set of power
users on a shard could result in increased load to that shard compared to
others.

Rebalancing adds additional complexity. A sharding function based on
consistent hashing can reduce the amount of transferred data.

Joining data from multiple shards is more complex.

Sharding adds more hardware and additional complexity.

Source(s) and further reading: sharding

The coming of the shard

Shard database architecture

Consistent hashing

Denormalization

Denormalization attempts to improve read performance at the expense of some
write performance. Redundant copies of the data are written in multiple tables to
avoid expensive joins. Some RDBMS such as PostgreSQL and Oracle support
materialized views which handle the work of storing redundant information and
keeping redundant copies consistent.

Once data becomes distributed with techniques such as federation and sharding,
managing joins across data centers further increases complexity. Denormalization
might circumvent the need for such complex joins.

In most systems, reads can heavily outnumber writes 100:1 or even 1000:1. A read
resulting in a complex database join can be very expensive, spending a significant
amount of time on disk operations.

http://www.paperplanes.de/2011/12/9/the-magic-of-consistent-hashing.html
http://highscalability.com/blog/2009/8/6/an-unorthodox-approach-to-database-design-the-coming-of-the.html
https://en.wikipedia.org/wiki/Shard_(database_architecture)
http://www.paperplanes.de/2011/12/9/the-magic-of-consistent-hashing.html
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/Materialized_view

Disadvantage(s): denormalization

Data is duplicated.

Constraints can help redundant copies of information stay in sync, which
increases complexity of the database design.

A denormalized database under heavy write load might perform worse than its
normalized counterpart.

Source(s) and further reading: denormalization

Denormalization

SQL tuning

SQL tuning is a broad topic and many books have been written as reference.

It's important to benchmark and profile to simulate and uncover bottlenecks.

Benchmark - Simulate high-load situations with tools such as ab.

Profile - Enable tools such as the slow query log to help track performance
issues.

Benchmarking and profiling might point you to the following optimizations.

Tighten up the schema

MySQL dumps to disk in contiguous blocks for fast access.

Use CHAR instead of VARCHAR for fixed-length fields.
 CHAR effectively allows for fast, random access, whereas with VARCHAR ,
you must find the end of a string before moving onto the next one.

Use TEXT for large blocks of text such as blog posts. TEXT also allows for
boolean searches. Using a TEXT field results in storing a pointer on disk that
is used to locate the text block.

Use INT for larger numbers up to 232 or 4 billion.

Use DECIMAL for currency to avoid floating point representation errors.

Avoid storing large BLOBS , store the location of where to get the object
instead.

 VARCHAR(255) is the largest number of characters that can be counted in an
8 bit number, often maximizing the use of a byte in some RDBMS.

Set the NOT NULL constraint where applicable to improve search
performance.

https://en.wikipedia.org/wiki/Denormalization
https://www.amazon.com/s/ref=nb_sb_noss_2?url=search-alias%3Daps&field-keywords=sql+tuning
http://httpd.apache.org/docs/2.2/programs/ab.html
http://dev.mysql.com/doc/refman/5.7/en/slow-query-log.html
http://stackoverflow.com/questions/1017239/how-do-null-values-affect-performance-in-a-database-search

Use good indices

Columns that you are querying (SELECT , GROUP BY , ORDER BY , JOIN)
could be faster with indices.

Indices are usually represented as self-balancing B-tree that keeps data
sorted and allows searches, sequential access, insertions, and deletions in
logarithmic time.

Placing an index can keep the data in memory, requiring more space.

Writes could also be slower since the index also needs to be updated.

When loading large amounts of data, it might be faster to disable indices, load
the data, then rebuild the indices.

Avoid expensive joins

Denormalize where performance demands it.

Partition tables

Break up a table by putting hot spots in a separate table to help keep it in
memory.

Tune the query cache

In some cases, the query cache could lead to performance issues.

Source(s) and further reading: SQL tuning

Tips for optimizing MySQL queries

Is there a good reason i see VARCHAR(255) used so often?

How do null values affect performance?

Slow query log

NoSQL

NoSQL is a collection of data items represented in a key-value store, document
store, wide column store, or a graph database. Data is denormalized, and joins
are generally done in the application code. Most NoSQL stores lack true ACID
transactions and favor eventual consistency.

https://en.wikipedia.org/wiki/B-tree
https://dev.mysql.com/doc/refman/5.7/en/query-cache.html
https://www.percona.com/blog/2016/10/12/mysql-5-7-performance-tuning-immediately-after-installation/
http://aiddroid.com/10-tips-optimizing-mysql-queries-dont-suck/
http://stackoverflow.com/questions/1217466/is-there-a-good-reason-i-see-varchar255-used-so-often-as-opposed-to-another-l
http://stackoverflow.com/questions/1017239/how-do-null-values-affect-performance-in-a-database-search
http://dev.mysql.com/doc/refman/5.7/en/slow-query-log.html

BASE is often used to describe the properties of NoSQL databases. In comparison
with the CAP Theorem, BASE chooses availability over consistency.

Basically available - the system guarantees availability.

Soft state - the state of the system may change over time, even without input.

Eventual consistency - the system will become consistent over a period of
time, given that the system doesn't receive input during that period.

In addition to choosing between SQL or NoSQL, it is helpful to understand which
type of NoSQL database best fits your use case(s). We'll review key-value stores,
document stores, wide column stores, and graph databases in the next section.

Key-value store

Abstraction: hash table

A key-value store generally allows for O(1) reads and writes and is often backed by
memory or SSD. Data stores can maintain keys in lexicographic order, allowing
efficient retrieval of key ranges. Key-value stores can allow for storing of metadata
with a value.

Key-value stores provide high performance and are often used for simple data
models or for rapidly-changing data, such as an in-memory cache layer. Since
they offer only a limited set of operations, complexity is shifted to the application
layer if additional operations are needed.

A key-value store is the basis for more complex systems such as a document
store, and in some cases, a graph database.

Source(s) and further reading: key-value store

Key-value database

Disadvantages of key-value stores

Redis architecture

Memcached architecture

Document store

Abstraction: key-value store with documents stored as values

A document store is centered around documents (XML, JSON, binary, etc), where
a document stores all information for a given object. Document stores provide

https://en.wikipedia.org/wiki/Lexicographical_order
https://en.wikipedia.org/wiki/Key-value_database
http://stackoverflow.com/questions/4056093/what-are-the-disadvantages-of-using-a-key-value-table-over-nullable-columns-or
http://qnimate.com/overview-of-redis-architecture/
https://www.adayinthelifeof.nl/2011/02/06/memcache-internals/

APIs or a query language to query based on the internal structure of the document
itself. Note, many key-value stores include features for working with a value's
metadata, blurring the lines between these two storage types.

Based on the underlying implementation, documents are organized by collections,
tags, metadata, or directories. Although documents can be organized or grouped
together, documents may have fields that are completely different from each
other.

Some document stores like MongoDB and CouchDB also provide a SQL-like
language to perform complex queries. DynamoDB supports both key-values and
documents.

Document stores provide high flexibility and are often used for working with
occasionally changing data.

Source(s) and further reading: document store

Document-oriented database

MongoDB architecture

CouchDB architecture

Elasticsearch architecture

Wide column store

Source: SQL & NoSQL, a brief history

Abstraction: nested map ColumnFamily<RowKey, Columns<ColKey, Value,
Timestamp>>

https://www.mongodb.com/mongodb-architecture
https://blog.couchdb.org/2016/08/01/couchdb-2-0-architecture/
http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/decandia07dynamo.pdf
https://en.wikipedia.org/wiki/Document-oriented_database
https://www.mongodb.com/mongodb-architecture
https://blog.couchdb.org/2016/08/01/couchdb-2-0-architecture/
https://www.elastic.co/blog/found-elasticsearch-from-the-bottom-up
http://blog.grio.com/2015/11/sql-nosql-a-brief-history.html

A wide column store's basic unit of data is a column (name/value pair). A column
can be grouped in column families (analogous to a SQL table). Super column
families further group column families. You can access each column independently
with a row key, and columns with the same row key form a row. Each value
contains a timestamp for versioning and for conflict resolution.

Google introduced Bigtable as the first wide column store, which influenced the
open-source HBase often-used in the Hadoop ecosystem, and Cassandra from
Facebook. Stores such as BigTable, HBase, and Cassandra maintain keys in
lexicographic order, allowing efficient retrieval of selective key ranges.

Wide column stores offer high availability and high scalability. They are often used
for very large data sets.

Source(s) and further reading: wide column store

SQL & NoSQL, a brief history

Bigtable architecture

HBase architecture

Cassandra architecture

http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/chang06bigtable.pdf
https://www.edureka.co/blog/hbase-architecture/
http://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archIntro.html
http://blog.grio.com/2015/11/sql-nosql-a-brief-history.html
http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/chang06bigtable.pdf
https://www.edureka.co/blog/hbase-architecture/
http://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archIntro.html

Graph database

Source: Graph database

Abstraction: graph

In a graph database, each node is a record and each arc is a relationship between
two nodes. Graph databases are optimized to represent complex relationships with
many foreign keys or many-to-many relationships.

Graphs databases offer high performance for data models with complex
relationships, such as a social network. They are relatively new and are not yet
widely-used; it might be more difficult to find development tools and resources.
Many graphs can only be accessed with REST APIs.

Source(s) and further reading: graph

Graph database

Neo4j

FlockDB

https://en.wikipedia.org/wiki/File:GraphDatabase_PropertyGraph.png
https://en.wikipedia.org/wiki/Graph_database
https://neo4j.com/
https://blog.twitter.com/2010/introducing-flockdb

Source(s) and further reading: NoSQL

Explanation of base terminology

NoSQL databases a survey and decision guidance

Scalability

Introduction to NoSQL

NoSQL patterns

SQL or NoSQL

Source: Transitioning from RDBMS to NoSQL

Reasons for SQL:

Structured data

Strict schema

Relational data

Need for complex joins

Transactions

Clear patterns for scaling

More established: developers, community, code, tools, etc

Lookups by index are very fast

Reasons for NoSQL:

http://stackoverflow.com/questions/3342497/explanation-of-base-terminology
https://medium.com/baqend-blog/nosql-databases-a-survey-and-decision-guidance-ea7823a822d#.wskogqenq
http://www.lecloud.net/post/7994751381/scalability-for-dummies-part-2-database
https://www.youtube.com/watch?v=qI_g07C_Q5I
http://horicky.blogspot.com/2009/11/nosql-patterns.html
https://www.infoq.com/articles/Transition-RDBMS-NoSQL/

Semi-structured data

Dynamic or flexible schema

Non-relational data

No need for complex joins

Store many TB (or PB) of data

Very data intensive workload

Very high throughput for IOPS

Sample data well-suited for NoSQL:

Rapid ingest of clickstream and log data

Leaderboard or scoring data

Temporary data, such as a shopping cart

Frequently accessed ('hot') tables

Metadata/lookup tables

Source(s) and further reading: SQL or NoSQL

Scaling up to your first 10 million users

SQL vs NoSQL differences

https://www.youtube.com/watch?v=kKjm4ehYiMs
https://www.sitepoint.com/sql-vs-nosql-differences/

Cache

Source: Scalable system design patterns

Caching improves page load times and can reduce the load on your servers and
databases. In this model, the dispatcher will first lookup if the request has been
made before and try to find the previous result to return, in order to save the actual
execution.

Databases often benefit from a uniform distribution of reads and writes across its
partitions. Popular items can skew the distribution, causing bottlenecks. Putting a
cache in front of a database can help absorb uneven loads and spikes in traffic.

Client caching

Caches can be located on the client side (OS or browser), server side, or in a
distinct cache layer.

CDN caching

CDNs are considered a type of cache.

http://horicky.blogspot.com/2010/10/scalable-system-design-patterns.html

Web server caching

Reverse proxies and caches such as Varnish can serve static and dynamic content
directly. Web servers can also cache requests, returning responses without having
to contact application servers.

Database caching

Your database usually includes some level of caching in a default configuration,
optimized for a generic use case. Tweaking these settings for specific usage
patterns can further boost performance.

Application caching

In-memory caches such as Memcached and Redis are key-value stores between
your application and your data storage. Since the data is held in RAM, it is much
faster than typical databases where data is stored on disk. RAM is more limited
than disk, so cache invalidation algorithms such as least recently used (LRU) can
help invalidate 'cold' entries and keep 'hot' data in RAM.

Redis has the following additional features:

Persistence option

Built-in data structures such as sorted sets and lists

There are multiple levels you can cache that fall into two general categories:
database queries and objects:

Row level

Query-level

Fully-formed serializable objects

Fully-rendered HTML

Generally, you should try to avoid file-based caching, as it makes cloning and
auto-scaling more difficult.

Caching at the database query level

Whenever you query the database, hash the query as a key and store the result to
the cache. This approach suffers from expiration issues:

https://www.varnish-cache.org/
https://en.wikipedia.org/wiki/Cache_algorithms
https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_recently_used_(LRU)

Hard to delete a cached result with complex queries

If one piece of data changes such as a table cell, you need to delete all
cached queries that might include the changed cell

Caching at the object level

See your data as an object, similar to what you do with your application code. Have
your application assemble the dataset from the database into a class instance or a
data structure(s):

Remove the object from cache if its underlying data has changed

Allows for asynchronous processing: workers assemble objects by consuming
the latest cached object

Suggestions of what to cache:

User sessions

Fully rendered web pages

Activity streams

User graph data

When to update the cache

Since you can only store a limited amount of data in cache, you'll need to
determine which cache update strategy works best for your use case.

Cache-aside

Source: From cache to in-memory data grid

http://www.slideshare.net/tmatyashovsky/from-cache-to-in-memory-data-grid-introduction-to-hazelcast

The application is responsible for reading and writing from storage. The cache
does not interact with storage directly. The application does the following:

Look for entry in cache, resulting in a cache miss

Load entry from the database

Add entry to cache

Return entry

def get_user(self, user_id):
 user = cache.get("user.{0}", user_id)
 if user is None:
 user = db.query("SELECT * FROM users WHERE user_id = {0}",
user_id)
 if user is not None:
 key = "user.{0}".format(user_id)
 cache.set(key, json.dumps(user))
 return user

Memcached is generally used in this manner.

Subsequent reads of data added to cache are fast. Cache-aside is also referred to
as lazy loading. Only requested data is cached, which avoids filling up the cache
with data that isn't requested.

Disadvantage(s): cache-aside

Each cache miss results in three trips, which can cause a noticeable delay.

Data can become stale if it is updated in the database. This issue is mitigated
by setting a time-to-live (TTL) which forces an update of the cache entry, or
by using write-through.

When a node fails, it is replaced by a new, empty node, increasing latency.

https://memcached.org/

Write-through

Source: Scalability, availability, stability, patterns

http://www.slideshare.net/jboner/scalability-availability-stability-patterns/

The application uses the cache as the main data store, reading and writing data to
it, while the cache is responsible for reading and writing to the database:

Application adds/updates entry in cache

Cache synchronously writes entry to data store

Return

Application code:

set_user(12345, {"foo":"bar"})

Cache code:

def set_user(user_id, values):
 user = db.query("UPDATE Users WHERE id = {0}", user_id, values)
 cache.set(user_id, user)

Write-through is a slow overall operation due to the write operation, but
subsequent reads of just written data are fast. Users are generally more tolerant of
latency when updating data than reading data. Data in the cache is not stale.

Disadvantage(s): write through

When a new node is created due to failure or scaling, the new node will not
cache entries until the entry is updated in the database. Cache-aside in
conjunction with write through can mitigate this issue.

Most data written might never be read, which can be minimized with a TTL.

Write-behind (write-back)

Source: Scalability, availability, stability, patterns

In write-behind, the application does the following:

Add/update entry in cache

Asynchronously write entry to the data store, improving write performance

Disadvantage(s): write-behind

There could be data loss if the cache goes down prior to its contents hitting
the data store.

It is more complex to implement write-behind than it is to implement cache-
aside or write-through.

http://www.slideshare.net/jboner/scalability-availability-stability-patterns/

Refresh-ahead

Source: From cache to in-memory data grid

You can configure the cache to automatically refresh any recently accessed cache
entry prior to its expiration.

Refresh-ahead can result in reduced latency vs read-through if the cache can
accurately predict which items are likely to be needed in the future.

Disadvantage(s): refresh-ahead

Not accurately predicting which items are likely to be needed in the future can
result in reduced performance than without refresh-ahead.

Disadvantage(s): cache

Need to maintain consistency between caches and the source of truth such as
the database through cache invalidation.

Cache invalidation is a difficult problem, there is additional complexity
associated with when to update the cache.

Need to make application changes such as adding Redis or memcached.

Source(s) and further reading

From cache to in-memory data grid

Scalable system design patterns

Introduction to architecting systems for scale

Scalability, availability, stability, patterns

Scalability

AWS ElastiCache strategies

Wikipedia

http://www.slideshare.net/tmatyashovsky/from-cache-to-in-memory-data-grid-introduction-to-hazelcast
https://en.wikipedia.org/wiki/Cache_algorithms
http://www.slideshare.net/tmatyashovsky/from-cache-to-in-memory-data-grid-introduction-to-hazelcast
http://horicky.blogspot.com/2010/10/scalable-system-design-patterns.html
http://lethain.com/introduction-to-architecting-systems-for-scale/
http://www.slideshare.net/jboner/scalability-availability-stability-patterns/
http://www.lecloud.net/post/9246290032/scalability-for-dummies-part-3-cache
http://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/Strategies.html
https://en.wikipedia.org/wiki/Cache_(computing)

Asynchronism

Source: Intro to architecting systems for scale

Asynchronous workflows help reduce request times for expensive operations that
would otherwise be performed in-line. They can also help by doing time-
consuming work in advance, such as periodic aggregation of data.

Message queues

Message queues receive, hold, and deliver messages. If an operation is too slow to
perform inline, you can use a message queue with the following workflow:

An application publishes a job to the queue, then notifies the user of job
status

A worker picks up the job from the queue, processes it, then signals the job is
complete

The user is not blocked and the job is processed in the background. During this
time, the client might optionally do a small amount of processing to make it seem
like the task has completed. For example, if posting a tweet, the tweet could be
instantly posted to your timeline, but it could take some time before your tweet is
actually delivered to all of your followers.

Redis is useful as a simple message broker but messages can be lost.

RabbitMQ is popular but requires you to adapt to the 'AMQP' protocol and manage
your own nodes.

Amazon SQS is hosted but can have high latency and has the possibility of
messages being delivered twice.

http://lethain.com/introduction-to-architecting-systems-for-scale/#platform_layer
https://redis.io/
https://www.rabbitmq.com/
https://aws.amazon.com/sqs/

Task queues

Tasks queues receive tasks and their related data, runs them, then delivers their
results. They can support scheduling and can be used to run computationally-
intensive jobs in the background.

Celery has support for scheduling and primarily has python support.

Back pressure

If queues start to grow significantly, the queue size can become larger than
memory, resulting in cache misses, disk reads, and even slower performance.
Back pressure can help by limiting the queue size, thereby maintaining a high
throughput rate and good response times for jobs already in the queue. Once the
queue fills up, clients get a server busy or HTTP 503 status code to try again later.
Clients can retry the request at a later time, perhaps with exponential backoff.

Disadvantage(s): asynchronism

Use cases such as inexpensive calculations and realtime workflows might be
better suited for synchronous operations, as introducing queues can add
delays and complexity.

Source(s) and further reading

It's all a numbers game

Applying back pressure when overloaded

Little's law

What is the difference between a message queue and a task queue?

https://docs.celeryproject.org/en/stable/
http://mechanical-sympathy.blogspot.com/2012/05/apply-back-pressure-when-overloaded.html
https://en.wikipedia.org/wiki/Exponential_backoff
https://www.youtube.com/watch?v=1KRYH75wgy4
http://mechanical-sympathy.blogspot.com/2012/05/apply-back-pressure-when-overloaded.html
https://en.wikipedia.org/wiki/Little%27s_law
https://www.quora.com/What-is-the-difference-between-a-message-queue-and-a-task-queue-Why-would-a-task-queue-require-a-message-broker-like-RabbitMQ-Redis-Celery-or-IronMQ-to-function

Communication

Source: OSI 7 layer model

Hypertext transfer protocol (HTTP)

HTTP is a method for encoding and transporting data between a client and a
server. It is a request/response protocol: clients issue requests and servers issue
responses with relevant content and completion status info about the request.
HTTP is self-contained, allowing requests and responses to flow through many
intermediate routers and servers that perform load balancing, caching, encryption,
and compression.

A basic HTTP request consists of a verb (method) and a resource (endpoint).
Below are common HTTP verbs:

http://www.escotal.com/osilayer.html

Verb Description Idempotent* Safe Cacheable

GET Reads a resource Yes Yes Yes

POST
Creates a resource or
trigger a process that
handles data

No No

Yes if
response
contains
freshness
info

PUT
Creates or replace a
resource

Yes No No

PATCH
Partially updates a
resource

No No

Yes if
response
contains
freshness
info

DELETE Deletes a resource Yes No No

*Can be called many times without different outcomes.

HTTP is an application layer protocol relying on lower-level protocols such as TCP
and UDP.

Source(s) and further reading: HTTP

What is HTTP?

Difference between HTTP and TCP

Difference between PUT and PATCH

https://www.nginx.com/resources/glossary/http/
https://www.quora.com/What-is-the-difference-between-HTTP-protocol-and-TCP-protocol
https://laracasts.com/discuss/channels/general-discussion/whats-the-differences-between-put-and-patch?page=1

Transmission control protocol (TCP)

Source: How to make a multiplayer game

TCP is a connection-oriented protocol over an IP network. Connection is
established and terminated using a handshake. All packets sent are guaranteed to
reach the destination in the original order and without corruption through:

Sequence numbers and checksum fields for each packet

Acknowledgement packets and automatic retransmission

If the sender does not receive a correct response, it will resend the packets. If
there are multiple timeouts, the connection is dropped. TCP also implements flow
control and congestion control. These guarantees cause delays and generally
result in less efficient transmission than UDP.

To ensure high throughput, web servers can keep a large number of TCP
connections open, resulting in high memory usage. It can be expensive to have a
large number of open connections between web server threads and say, a
memcached server. Connection pooling can help in addition to switching to UDP
where applicable.

TCP is useful for applications that require high reliability but are less time critical.
Some examples include web servers, database info, SMTP, FTP, and SSH.

Use TCP over UDP when:

You need all of the data to arrive intact

You want to automatically make a best estimate use of the network
throughput

http://www.wildbunny.co.uk/blog/2012/10/09/how-to-make-a-multi-player-game-part-1/
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Handshaking
https://en.wikipedia.org/wiki/Transmission_Control_Protocol#Checksum_computation
https://en.wikipedia.org/wiki/Acknowledgement_(data_networks)
https://en.wikipedia.org/wiki/Flow_control_(data)
https://en.wikipedia.org/wiki/Network_congestion#Congestion_control
https://memcached.org/
https://en.wikipedia.org/wiki/Connection_pool

User datagram protocol (UDP)

Source: How to make a multiplayer game

UDP is connectionless. Datagrams (analogous to packets) are guaranteed only at
the datagram level. Datagrams might reach their destination out of order or not at
all. UDP does not support congestion control. Without the guarantees that TCP
support, UDP is generally more efficient.

UDP can broadcast, sending datagrams to all devices on the subnet. This is useful
with DHCP because the client has not yet received an IP address, thus preventing
a way for TCP to stream without the IP address.

UDP is less reliable but works well in real time use cases such as VoIP, video chat,
streaming, and realtime multiplayer games.

Use UDP over TCP when:

You need the lowest latency

Late data is worse than loss of data

You want to implement your own error correction

Source(s) and further reading: TCP and UDP

Networking for game programming

Key differences between TCP and UDP protocols

Difference between TCP and UDP

Transmission control protocol

User datagram protocol

Scaling memcache at Facebook

http://www.wildbunny.co.uk/blog/2012/10/09/how-to-make-a-multi-player-game-part-1/
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
http://gafferongames.com/networking-for-game-programmers/udp-vs-tcp/
http://www.cyberciti.biz/faq/key-differences-between-tcp-and-udp-protocols/
http://stackoverflow.com/questions/5970383/difference-between-tcp-and-udp
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
http://www.cs.bu.edu/~jappavoo/jappavoo.github.com/451/papers/memcache-fb.pdf

Remote procedure call (RPC)

Source: Crack the system design questions

In an RPC, a client causes a procedure to execute on a different address space,
usually a remote server. The procedure is coded as if it were a local procedure call,
abstracting away the details of how to communicate with the server from the client
program. Remote calls are usually slower and less reliable than local calls so it is
helpful to distinguish RPC calls from local calls. Popular RPC frameworks include
Protobuf, Thrift, and Avro.

RPC is a request-response protocol:

Client program - Calls the client stub procedure. The parameters are pushed
onto the stack like a local procedure call.

Client stub procedure - Marshals (packs) procedure id and arguments into a
request message.

Client communication module - OS sends the message from the client to the
server.

Server communication module - OS passes the incoming packets to the
server stub procedure.

Server stub procedure - Unmarshalls the results, calls the server procedure
matching the procedure id and passes the given arguments.

The server response repeats the steps above in reverse order.

Sample RPC calls:

GET /someoperation?data=anId

POST /anotheroperation
{

http://www.puncsky.com/blog/2016-02-13-crack-the-system-design-interview
https://developers.google.com/protocol-buffers/
https://thrift.apache.org/
https://avro.apache.org/docs/current/

 "data":"anId";
 "anotherdata": "another value"
}

RPC is focused on exposing behaviors. RPCs are often used for performance
reasons with internal communications, as you can hand-craft native calls to better
fit your use cases.

Choose a native library (aka SDK) when:

You know your target platform.

You want to control how your "logic" is accessed.

You want to control how error control happens off your library.

Performance and end user experience is your primary concern.

HTTP APIs following REST tend to be used more often for public APIs.

Disadvantage(s): RPC

RPC clients become tightly coupled to the service implementation.

A new API must be defined for every new operation or use case.

It can be difficult to debug RPC.

You might not be able to leverage existing technologies out of the box. For
example, it might require additional effort to ensure RPC calls are properly
cached on caching servers such as Squid.

Representational state transfer (REST)

REST is an architectural style enforcing a client/server model where the client acts
on a set of resources managed by the server. The server provides a representation
of resources and actions that can either manipulate or get a new representation of
resources. All communication must be stateless and cacheable.

There are four qualities of a RESTful interface:

Identify resources (URI in HTTP) - use the same URI regardless of any
operation.

Change with representations (Verbs in HTTP) - use verbs, headers, and
body.

Self-descriptive error message (status response in HTTP) - Use status

http://etherealbits.com/2012/12/debunking-the-myths-of-rpc-rest/
http://www.squid-cache.org/

codes, don't reinvent the wheel.

HATEOAS (HTML interface for HTTP) - your web service should be fully
accessible in a browser.

Sample REST calls:

GET /someresources/anId

PUT /someresources/anId
{"anotherdata": "another value"}

REST is focused on exposing data. It minimizes the coupling between client/server
and is often used for public HTTP APIs. REST uses a more generic and uniform
method of exposing resources through URIs, representation through headers, and
actions through verbs such as GET, POST, PUT, DELETE, and PATCH. Being
stateless, REST is great for horizontal scaling and partitioning.

Disadvantage(s): REST

With REST being focused on exposing data, it might not be a good fit if
resources are not naturally organized or accessed in a simple hierarchy. For
example, returning all updated records from the past hour matching a
particular set of events is not easily expressed as a path. With REST, it is likely
to be implemented with a combination of URI path, query parameters, and
possibly the request body.

REST typically relies on a few verbs (GET, POST, PUT, DELETE, and PATCH)
which sometimes doesn't fit your use case. For example, moving expired
documents to the archive folder might not cleanly fit within these verbs.

Fetching complicated resources with nested hierarchies requires multiple
round trips between the client and server to render single views, e.g. fetching
content of a blog entry and the comments on that entry. For mobile
applications operating in variable network conditions, these multiple
roundtrips are highly undesirable.

Over time, more fields might be added to an API response and older clients
will receive all new data fields, even those that they do not need, as a result, it
bloats the payload size and leads to larger latencies.

http://restcookbook.com/Basics/hateoas/
https://github.com/for-GET/know-your-http-well/blob/master/headers.md

RPC and REST calls comparison

Operation RPC REST

Signup POST /signup POST /persons

Resign

POST /resign
{
"personid": "1234"
}

DELETE
/persons/1234

Read a person
GET /readPerson?
personid=1234

GET /persons/1234

Read a person’s
items list

GET /readUsersItemsList?
personid=1234

GET
/persons/1234/items

Add an item to a
person’s items

POST
/addItemToUsersItemsList
{
"personid": "1234";
"itemid": "456"
}

POST
/persons/1234/items
{
"itemid": "456"
}

Update an item

POST /modifyItem
{
"itemid": "456";
"key": "value"
}

PUT /items/456
{
"key": "value"
}

Delete an item

POST /removeItem
{
"itemid": "456"
}

DELETE /items/456

Source: Do you really know why you prefer REST over RPC

Source(s) and further reading: REST and RPC

Do you really know why you prefer REST over RPC

When are RPC-ish approaches more appropriate than REST?

REST vs JSON-RPC

https://apihandyman.io/do-you-really-know-why-you-prefer-rest-over-rpc/
https://apihandyman.io/do-you-really-know-why-you-prefer-rest-over-rpc/
http://programmers.stackexchange.com/a/181186
http://stackoverflow.com/questions/15056878/rest-vs-json-rpc

Debunking the myths of RPC and REST

What are the drawbacks of using REST

Crack the system design questions

Thrift

Why REST for internal use and not RPC

Security

This section could use some updates.

Security is a broad topic. Unless you have considerable experience, a security
background, or are applying for a position that requires knowledge of security, you
probably won't need to know more than the basics:

Encrypt in transit and at rest.

Sanitize all user inputs or any input parameters exposed to user to prevent
XSS and SQL injection.

Use parameterized queries to prevent SQL injection.

Use the principle of least privilege.

Source(s) and further reading

API security checklist

Security guide for developers

OWASP top ten

http://etherealbits.com/2012/12/debunking-the-myths-of-rpc-rest/
https://www.quora.com/What-are-the-drawbacks-of-using-RESTful-APIs
http://www.puncsky.com/blog/2016-02-13-crack-the-system-design-interview
https://code.facebook.com/posts/1468950976659943/
http://arstechnica.com/civis/viewtopic.php?t=1190508
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/SQL_injection
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://github.com/shieldfy/API-Security-Checklist
https://github.com/FallibleInc/security-guide-for-developers
https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet

Appendix

For example, you might need to determine how long it will take to generate 100
image thumbnails from disk or how much memory a data structure will take. The
Powers of two table and Latency numbers every programmer should know are
handy references.

Powers of two table

Power Exact Value Approx Value Bytes

7 128
8 256
10 1024 1 thousand 1 KB
16 65,536 64 KB
20 1,048,576 1 million 1 MB
30 1,073,741,824 1 billion 1 GB
32 4,294,967,296 4 GB
40 1,099,511,627,776 1 trillion 1 TB

Source(s) and further reading

Powers of two

Latency numbers every programmer should know

Latency Comparison Numbers

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns
20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 10,000 ns 10 us
Send 1 KB bytes over 1 Gbps network 10,000 ns 10 us
Read 4 KB randomly from SSD* 150,000 ns 150 us
~1GB/sec SSD
Read 1 MB sequentially from memory 250,000 ns 250 us
Round trip within same datacenter 500,000 ns 500 us

https://en.wikipedia.org/wiki/Power_of_two

Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us
1 ms ~1GB/sec SSD, 4X memory
HDD seek 10,000,000 ns 10,000 us
10 ms 20x datacenter roundtrip
Read 1 MB sequentially from 1 Gbps 10,000,000 ns 10,000 us
10 ms 40x memory, 10X SSD
Read 1 MB sequentially from HDD 30,000,000 ns 30,000 us
30 ms 120x memory, 30X SSD
Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us
150 ms

Notes

1 ns = 10^-9 seconds
1 us = 10^-6 seconds = 1,000 ns
1 ms = 10^-3 seconds = 1,000 us = 1,000,000 ns

Handy metrics based on numbers above:

Read sequentially from HDD at 30 MB/s

Read sequentially from 1 Gbps Ethernet at 100 MB/s

Read sequentially from SSD at 1 GB/s

Read sequentially from main memory at 4 GB/s

6-7 world-wide round trips per second

2,000 round trips per second within a data center

Latency numbers visualized

Source(s) and further reading

Latency numbers every programmer should know - 1

Latency numbers every programmer should know - 2

Designs, lessons, and advice from building large distributed systems

Software Engineering Advice from Building Large-Scale Distributed Systems

Additional system design

Common system design questions, with links to resources on how to solve
each.

Question Reference(s)

Design a file sync service like Dropbox youtube.com

Design a search engine like Google

queue.acm.org
stackexchange.com
ardendertat.com
stanford.edu

Design a scalable web crawler like Google quora.com

Design Google docs
code.google.com
neil.fraser.name

Design a key-value store like Redis slideshare.net

Design a cache system like Memcached slideshare.net

Design a recommendation system like Amazon's
hulu.com
ijcai13.org

Design a tinyurl system like Bitly n00tc0d3r.blogspot.com

Design a chat app like WhatsApp highscalability.com

Design a picture sharing system like Instagram
highscalability.com
highscalability.com

Design the Facebook news feed function

quora.com
quora.com
slideshare.net

https://gist.github.com/jboner/2841832
https://gist.github.com/hellerbarde/2843375
http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf
https://static.googleusercontent.com/media/research.google.com/en//people/jeff/stanford-295-talk.pdf
https://www.youtube.com/watch?v=PE4gwstWhmc
http://queue.acm.org/detail.cfm?id=988407
http://programmers.stackexchange.com/questions/38324/interview-question-how-would-you-implement-google-search
http://www.ardendertat.com/2012/01/11/implementing-search-engines/
http://infolab.stanford.edu/~backrub/google.html
https://www.quora.com/How-can-I-build-a-web-crawler-from-scratch
https://code.google.com/p/google-mobwrite/
https://neil.fraser.name/writing/sync/
http://www.slideshare.net/dvirsky/introduction-to-redis
http://www.slideshare.net/oemebamo/introduction-to-memcached
https://web.archive.org/web/20170406065247/http://tech.hulu.com/blog/2011/09/19/recommendation-system.html
http://ijcai13.org/files/tutorial_slides/td3.pdf
http://n00tc0d3r.blogspot.com/
http://highscalability.com/blog/2014/2/26/the-whatsapp-architecture-facebook-bought-for-19-billion.html
http://highscalability.com/flickr-architecture
http://highscalability.com/blog/2011/12/6/instagram-architecture-14-million-users-terabytes-of-photos.html
http://www.quora.com/What-are-best-practices-for-building-something-like-a-News-Feed
http://www.quora.com/Activity-Streams/What-are-the-scaling-issues-to-keep-in-mind-while-developing-a-social-network-feed
http://www.slideshare.net/danmckinley/etsy-activity-feeds-architecture

Design the Facebook timeline function facebook.com
highscalability.com

Design the Facebook chat function
erlang-factory.com
facebook.com

Design a graph search function like Facebook's
facebook.com
facebook.com
facebook.com

Design a content delivery network like CloudFlare figshare.com

Design a trending topic system like Twitter's
michael-noll.com
snikolov .wordpress.com

Design a random ID generation system
blog.twitter.com
github.com

Return the top k requests during a time interval
cs.ucsb.edu
wpi.edu

Design a system that serves data from multiple
data centers

highscalability.com

Design an online multiplayer card game
indieflashblog.com
buildnewgames.com

Design a garbage collection system
stuffwithstuff.com
washington.edu

Design an API rate limiter https://stripe.com/blog/

Design a Stock Exchange (like NASDAQ or
Binance)

Jane Street
Golang Implementation
Go Implemenation

https://www.facebook.com/note.php?note_id=10150468255628920
http://highscalability.com/blog/2012/1/23/facebook-timeline-brought-to-you-by-the-power-of-denormaliza.html
http://www.erlang-factory.com/upload/presentations/31/EugeneLetuchy-ErlangatFacebook.pdf
https://www.facebook.com/note.php?note_id=14218138919&id=9445547199&index=0
https://www.facebook.com/notes/facebook-engineering/under-the-hood-building-out-the-infrastructure-for-graph-search/10151347573598920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-indexing-and-ranking-in-graph-search/10151361720763920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-the-natural-language-interface-of-graph-search/10151432733048920
https://figshare.com/articles/Globally_distributed_content_delivery/6605972
http://www.michael-noll.com/blog/2013/01/18/implementing-real-time-trending-topics-in-storm/
http://snikolov.wordpress.com/2012/11/14/early-detection-of-twitter-trends/
https://blog.twitter.com/2010/announcing-snowflake
https://github.com/twitter/snowflake/
https://www.cs.ucsb.edu/sites/cs.ucsb.edu/files/docs/reports/2005-23.pdf
http://davis.wpi.edu/xmdv/docs/EDBT11-diyang.pdf
http://highscalability.com/blog/2009/8/24/how-google-serves-data-from-multiple-datacenters.html
https://web.archive.org/web/20180929181117/http://www.indieflashblog.com/how-to-create-an-asynchronous-multiplayer-game.html
http://buildnewgames.com/real-time-multiplayer/
http://journal.stuffwithstuff.com/2013/12/08/babys-first-garbage-collector/
http://courses.cs.washington.edu/courses/csep521/07wi/prj/rick.pdf
https://stripe.com/blog/rate-limiters
https://youtu.be/b1e4t2k2KJY
https://around25.com/blog/building-a-trading-engine-for-a-crypto-exchange/
http://bhomnick.net/building-a-simple-limit-order-in-go/

Real world architectures

Articles on how real world systems are designed.

Source: Twitter timelines at scale

Don't focus on nitty gritty details for the following articles, instead:

Identify shared principles, common technologies, and patterns within these
articles

Study what problems are solved by each component, where it works, where it
doesn't

Type System Reference(s)

Data
processing

MapReduce - Distributed data
processing from Google

research.google.com

Data
processing

Spark - Distributed data processing
from Databricks

slideshare.net

Data Storm - Distributed data processing

https://www.infoq.com/presentations/Twitter-Timeline-Scalability
http://static.googleusercontent.com/media/research.google.com/zh-CN/us/archive/mapreduce-osdi04.pdf
http://www.slideshare.net/AGrishchenko/apache-spark-architecture

processing from Twitter slideshare.net

Data store
Bigtable - Distributed column-oriented
database from Google

harvard.edu

Data store
HBase - Open source implementation
of Bigtable

slideshare.net

Data store
Cassandra - Distributed column-
oriented database from Facebook

slideshare.net

Data store
DynamoDB - Document-oriented
database from Amazon

harvard.edu

Data store
MongoDB - Document-oriented
database

slideshare.net

Data store
Spanner - Globally-distributed
database from Google

research.google.com

Data store
Memcached - Distributed memory
caching system

slideshare.net

Data store
Redis - Distributed memory caching
system with persistence and value
types

slideshare.net

File
system

Google File System (GFS) -
Distributed file system

research.google.com

File
system

Hadoop File System (HDFS) - Open
source implementation of GFS

apache.org

Misc
Chubby - Lock service for loosely-
coupled distributed systems from
Google

research.google.com

Misc
Dapper - Distributed systems tracing
infrastructure research.google.com

Misc
Kafka - Pub/sub message queue from
LinkedIn

slideshare.net

http://www.slideshare.net/previa/storm-16094009
http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/chang06bigtable.pdf
http://www.slideshare.net/alexbaranau/intro-to-hbase
http://www.slideshare.net/planetcassandra/cassandra-introduction-features-30103666
http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/decandia07dynamo.pdf
http://www.slideshare.net/mdirolf/introduction-to-mongodb
http://research.google.com/archive/spanner-osdi2012.pdf
http://www.slideshare.net/oemebamo/introduction-to-memcached
http://www.slideshare.net/dvirsky/introduction-to-redis
http://static.googleusercontent.com/media/research.google.com/zh-CN/us/archive/gfs-sosp2003.pdf
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/archive/chubby-osdi06.pdf
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36356.pdf
http://www.slideshare.net/mumrah/kafka-talk-tri-hug

Misc Zookeeper - Centralized infrastructure
and services enabling synchronization

slideshare.net

http://www.slideshare.net/sauravhaloi/introduction-to-apache-zookeeper

Company architectures

Company Reference(s)

Amazon Amazon architecture

Cinchcast Producing 1,500 hours of audio every day

DataSift Realtime datamining At 120,000 tweets per second

Dropbox How we've scaled Dropbox

ESPN Operating At 100,000 duh nuh nuhs per second

Google Google architecture

Instagram
14 million users, terabytes of photos
What powers Instagram

Justin.tv Justin.Tv's live video broadcasting architecture

Facebook

Scaling memcached at Facebook
TAO: Facebook’s distributed data store for the social graph
Facebook’s photo storage
How Facebook Live Streams To 800,000 Simultaneous
Viewers

Flickr Flickr architecture

Mailbox From 0 to one million users in 6 weeks

Netflix
A 360 Degree View Of The Entire Netflix Stack
Netflix: What Happens When You Press Play?

Pinterest
From 0 To 10s of billions of page views a month
18 million visitors, 10x growth, 12 employees

Playfish 50 million monthly users and growing

PlentyOfFish PlentyOfFish architecture

Salesforce How they handle 1.3 billion transactions a day

Stack
Overflow

Stack Overflow architecture

http://highscalability.com/amazon-architecture
http://highscalability.com/blog/2012/7/16/cinchcast-architecture-producing-1500-hours-of-audio-every-d.html
http://highscalability.com/blog/2011/11/29/datasift-architecture-realtime-datamining-at-120000-tweets-p.html
https://www.youtube.com/watch?v=PE4gwstWhmc
http://highscalability.com/blog/2013/11/4/espns-architecture-at-scale-operating-at-100000-duh-nuh-nuhs.html
http://highscalability.com/google-architecture
http://highscalability.com/blog/2011/12/6/instagram-architecture-14-million-users-terabytes-of-photos.html
http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances
http://highscalability.com/blog/2010/3/16/justintvs-live-video-broadcasting-architecture.html
https://cs.uwaterloo.ca/~brecht/courses/854-Emerging-2014/readings/key-value/fb-memcached-nsdi-2013.pdf
https://cs.uwaterloo.ca/~brecht/courses/854-Emerging-2014/readings/data-store/tao-facebook-distributed-datastore-atc-2013.pdf
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf
http://highscalability.com/blog/2016/6/27/how-facebook-live-streams-to-800000-simultaneous-viewers.html
http://highscalability.com/flickr-architecture
http://highscalability.com/blog/2013/6/18/scaling-mailbox-from-0-to-one-million-users-in-6-weeks-and-1.html
http://highscalability.com/blog/2015/11/9/a-360-degree-view-of-the-entire-netflix-stack.html
http://highscalability.com/blog/2017/12/11/netflix-what-happens-when-you-press-play.html
http://highscalability.com/blog/2013/4/15/scaling-pinterest-from-0-to-10s-of-billions-of-page-views-a.html
http://highscalability.com/blog/2012/5/21/pinterest-architecture-update-18-million-visitors-10x-growth.html
http://highscalability.com/blog/2010/9/21/playfishs-social-gaming-architecture-50-million-monthly-user.html
http://highscalability.com/plentyoffish-architecture
http://highscalability.com/blog/2013/9/23/salesforce-architecture-how-they-handle-13-billion-transacti.html
http://highscalability.com/blog/2009/8/5/stack-overflow-architecture.html

TripAdvisor 40M visitors, 200M dynamic page views, 30TB data

Tumblr 15 billion page views a month

Twitter

Making Twitter 10000 percent faster
Storing 250 million tweets a day using MySQL
150M active users, 300K QPS, a 22 MB/S firehose
Timelines at scale
Big and small data at Twitter
Operations at Twitter: scaling beyond 100 million users
How Twitter Handles 3,000 Images Per Second

Uber
How Uber scales their real-time market platform
Lessons Learned From Scaling Uber To 2000 Engineers, 1000
Services, And 8000 Git Repositories

WhatsApp The WhatsApp architecture Facebook bought for $19 billion

YouTube
YouTube scalability
YouTube architecture

http://highscalability.com/blog/2011/6/27/tripadvisor-architecture-40m-visitors-200m-dynamic-page-view.html
http://highscalability.com/blog/2012/2/13/tumblr-architecture-15-billion-page-views-a-month-and-harder.html
http://highscalability.com/scaling-twitter-making-twitter-10000-percent-faster
http://highscalability.com/blog/2011/12/19/how-twitter-stores-250-million-tweets-a-day-using-mysql.html
http://highscalability.com/blog/2013/7/8/the-architecture-twitter-uses-to-deal-with-150m-active-users.html
https://www.infoq.com/presentations/Twitter-Timeline-Scalability
https://www.youtube.com/watch?v=5cKTP36HVgI
https://www.youtube.com/watch?v=z8LU0Cj6BOU
http://highscalability.com/blog/2016/4/20/how-twitter-handles-3000-images-per-second.html
http://highscalability.com/blog/2015/9/14/how-uber-scales-their-real-time-market-platform.html
http://highscalability.com/blog/2016/10/12/lessons-learned-from-scaling-uber-to-2000-engineers-1000-ser.html
http://highscalability.com/blog/2014/2/26/the-whatsapp-architecture-facebook-bought-for-19-billion.html
https://www.youtube.com/watch?v=w5WVu624fY8
http://highscalability.com/youtube-architecture

Company engineering blogs

Architectures for companies.

Airbnb Engineering

Atlassian Developers

AWS Blog

Bitly Engineering Blog

Box Blogs

Cloudera Developer Blog

Dropbox Tech Blog

Engineering at Quora

Ebay Tech Blog

Evernote Tech Blog

Etsy Code as Craft

Facebook Engineering

Flickr Code

Foursquare Engineering Blog

GitHub Engineering Blog

Google Research Blog

Groupon Engineering Blog

Heroku Engineering Blog

Hubspot Engineering Blog

High Scalability

Instagram Engineering

Intel Software Blog

Jane Street Tech Blog

LinkedIn Engineering

Microsoft Engineering

Microsoft Python Engineering

Netflix Tech Blog

Paypal Developer Blog

Pinterest Engineering Blog

Reddit Blog

http://nerds.airbnb.com/
https://developer.atlassian.com/blog/
https://aws.amazon.com/blogs/aws/
http://word.bitly.com/
https://blog.box.com/blog/category/engineering
http://blog.cloudera.com/
https://tech.dropbox.com/
https://www.quora.com/q/quoraengineering
http://www.ebaytechblog.com/
https://blog.evernote.com/tech/
http://codeascraft.com/
https://www.facebook.com/Engineering
http://code.flickr.net/
http://engineering.foursquare.com/
https://github.blog/category/engineering
http://googleresearch.blogspot.com/
https://engineering.groupon.com/
https://engineering.heroku.com/
http://product.hubspot.com/blog/topic/engineering
http://highscalability.com/
http://instagram-engineering.tumblr.com/
https://software.intel.com/en-us/blogs/
https://blogs.janestreet.com/category/ocaml/
http://engineering.linkedin.com/blog
https://engineering.microsoft.com/
https://blogs.msdn.microsoft.com/pythonengineering/
http://techblog.netflix.com/
https://medium.com/paypal-engineering
https://medium.com/@Pinterest_Engineering
http://www.redditblog.com/

Salesforce Engineering Blog

Slack Engineering Blog

Spotify Labs

Twilio Engineering Blog

Twitter Engineering

Uber Engineering Blog

Yahoo Engineering Blog

Yelp Engineering Blog

Zynga Engineering Blog

https://developer.salesforce.com/blogs/engineering/
https://slack.engineering/
https://labs.spotify.com/
http://www.twilio.com/engineering
https://blog.twitter.com/engineering/
http://eng.uber.com/
http://yahooeng.tumblr.com/
http://engineeringblog.yelp.com/
https://www.zynga.com/blogs/engineering

Licenses & certifications

! LeetCode Global TOP 300 (Swift: Certificate, Sources: Swift).

! Golden Award for the Year of the Tiger Challenge (TypeScript: Certificate,
Sources: Codility).

! Golden Award Muad'Dib's Challenge (Swift: Certificate, Sources: Swift).

LinkedIn Skill Asessment (Mobile): Swift (Programming Language), Object-
Oriented Programming (OOP), Objective-C, C++, Ionic, JSON, XML, Android,
Kotlin, Maven, Java, REST APIs.

LinkedIn Skill Asessment (Front-End): Front-end Development, Angular,
React, Javascript, HTML, CSS, jQuery.

LinkedIn Skill Asessment (Back-End): Node.js, Java, Spring Framework, Scala,
C#, .NET Framework, Unity, Python (Programming Language), Django, PHP, C
(Programming Language).

LinkedIn Skill Asessment (Databases): MongoDB, NoSQL, Transact-SQL (T-
SQL), MySQL.

LinkedIn Skill Asessment (Infra/DevOps): Bash, Git, Amazon Web Services
(AWS), AWS Lambda, Google Cloud Platform (GCP), Microsoft Azure,
Hadoop, IT Operations.

https://leetcode.com/sergeyleschev/
https://github.com/sergeyleschev/leetcode-swift
https://app.codility.com/cert/view/certQBA3EW-QESXM38DNR3SXMYZ/
https://github.com/sergeyleschev/codility-swift
https://app.codility.com/cert/view/cert5YT6JA-Y9ZKFEFXEZWGTR3G/
https://github.com/sergeyleschev/codility-swift
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Swift/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Object-Oriented%20Programming%20(OOP)/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Objective-C/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/C++/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Angular/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/JSON/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/XML/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Android/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Kotlin/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Maven/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Java/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/REST%20APIs/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Front-end%20Development/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Angular/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/React/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/JavaScript/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/HTML/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Cascading%20Style%20Sheets%20(CSS)/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/jQuery/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Node.js/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Java/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Spring%20Framework/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Scala/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/C%23/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/.NET%20Framework/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Unity/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Python%20(Programming%20Language)/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Django/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/PHP/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/C%20(Programming%20Language)/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/MongoDB/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/NoSQL/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Transact-SQL%20(T-SQL)/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/MySQL/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Bash/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Git/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Amazon%20Web%20Services%20(AWS)/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/AWS%20Lambda/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Google%20Cloud%20Platform%20(GCP)/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Microsoft%20Azure/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/Hadoop/report/
https://www.linkedin.com/in/sergeyleschev/detail/assessments/IT%20Operations/report/

Contacts

I have a clear focus on time-to-market and don't prioritize technical debt.

" #startups #management #cto #swift #typescript #database

Email: sergey.leschev@gmail.com

$ LinkedIn: https://linkedin.com/in/sergeyleschev

$ Twitter: https://twitter.com/sergeyleschev

$ Github: https://github.com/sergeyleschev

% Website: https://sergeyleschev.github.io

& PDF: Download

ALT: SIARHEI LIASHCHOU

mailto:sergey.leschev@gmail.com
https://www.linkedin.com/in/sergeyleschev/
https://twitter.com/sergeyleschev
https://github.com/sergeyleschev
https://sergeyleschev.github.io/
https://sergeyleschev.github.io/sergeyleschev-system-architect-roadmap.pdf

